

Welcome to GNU MediaGoblin’s documentation!

GNU MediaGoblin is a platform for sharing photos, video and other media
in an environment that respects our freedom and independence.

This is a Free Software project. It is built by contributors for all
to use and enjoy. If you’re interested in contributing, see the wiki [https://web.archive.org/web/20200817190402/https://wiki.mediagoblin.org/] which has pages that talk about the
ways someone can contribute.

Part 1: Site Administrator’s Guide

This guide covers installing, configuring, deploying and running a GNU
MediaGoblin website. It is written for site administrators.

	Foreword

	About GNU MediaGoblin

	Deploying MediaGoblin

	Further Considerations for Production Deployments

	Configuring MediaGoblin

	Upgrading MediaGoblin

	Troubleshooting

	Media Types

	How to Get Help with MediaGoblin

	Release Notes

	Theming MediaGoblin

	Plugins

	Command-line and batch uploading

Part 2: Core plugin documentation

	basic_auth plugin

	flatpagesfile plugin

	LDAP plugin

	OpenID plugin

	raven plugin

	sampleplugin

	Subtitles plugin

	Trim whitespace plugin

Part 3: Plugin Writer’s Guide

This guide covers writing new GNU MediaGoblin plugins.

	Foreword

	Quick Start

	Database models for plugins

	Plugin API

	Writing unit tests for plugins

	Documentation on Built-in Hooks

	Media Type hooks

	Authentication Hooks

Part 4: Developer’s Zone

This chapter contains various information for developers.

	Contributing

	Codebase Documentation

	Storage

	Release Checklist

	Original Design Decisions

	Migrations

Part 5: Pump API

This chapter covers MediaGoblin’s Pump API [https://github.com/e14n/pump.io/blob/master/API.md] support. (A
work in progress; full federation is not supported at the moment, but
media uploading works! You can use something like
PyPump [http://pypump.org]
to write MediaGoblin applications.)

	API Authentication

	Activities

	Objects

Indices and tables

	Search Page

	Index

This guide was built on Apr 11, 2023.

Foreword

About the Site Administrator’s Guide

This is the site administrator manual for GNU MediaGoblin. It covers
how to set up and configure MediaGoblin and the kind of information
that someone running MediaGoblin would need to know.

We have other documentation at:

	http://mediagoblin.org/join/ for general “join us” information

	https://web.archive.org/web/20200817190402/https://wiki.mediagoblin.org/ for our contributor/developer-focused wiki

Improving the Site Administrator’s Guide

There are a few ways—please pick whichever method is convenient for
you!

	Write up a bug report in the bug tracker [https://issues.mediagoblin.org/].

	Tell someone on IRC #mediagoblin on Freenode.

	Write an email to the devel mailing list [http://lists.mediagoblin.org/listinfo/devel].

More information about contributing is available on the join page [http://mediagoblin.org/join/].

Patches are the most helpful, but even feedback on what you think
could be improved and how to improve it is also helpful.

About GNU MediaGoblin

Sections

	What is GNU MediaGoblin?

	Why Build GNU MediaGoblin?

	Who Contributes to the Project?

	How Can I Participate?

	How is GNU MediaGoblin licensed?

	Is MediaGoblin an official GNU project? What does that mean?

What is GNU MediaGoblin?

In 2008, a number of free software developers and activists gathered
at the FSF to attempt to answer the question “What should software
freedom look like on the participatory web?” Their answer, the
Franklin Street Statement [http://autonomo.us/2008/07/franklin-street-statement/] has lead to the development of
autonomo.us [http://autonomo.us/] community, and free software projects including
Identi.ca [http://identi.ca/] and Libre.fm [http://libre.fm/].

Identi.ca and Libre.fm address the need for micro-blogging and music
sharing services and software that respect users’ freedom and
autonomy.

GNU MediaGoblin emerges from this milieu to create a platform for us to share
photos, video and other media in an environment that respects our freedom and
independence. In the future MediaGoblin will provide tools to facilitate
collaboration on media projects.

Why Build GNU MediaGoblin?

The Internet is designed—and works best—as a complex and endlessly
resilient network. When key services and media outlets are
concentrated in centralized platforms, the network becomes less useful
and increasingly fragile. As always, the proprietary nature of these
systems, hinders users ability to develop, extend, and understand
their software; however, in the case of network services it also means
that users must forfeit control of their data to the service
providers.

Therefore, we believe that network services must be federated to avoid
centralization and that everyone ought to have control over their
data. In support of this, we’ve decided to help build the tools to
make these kinds of services possible. We hope you’ll join us, both
as users and as contributors.

Who Contributes to the Project?

You do!

We are free software activists and folks who have worked on a variety
of other projects including: Libre.fm, GNU Social, Status.net, Miro,
Miro Community, and OpenHatch among others. We’re programmers,
musicians, writers, and painters. We’re friendly and dedicated to
software and network freedom.

How Can I Participate?

See Get Involved [http://mediagoblin.org/join/] on the website. We
eagerly look forward to seeing you!

How is GNU MediaGoblin licensed?

GNU MediaGoblin software is released under an AGPLv3 license.

See the COPYING file in the root of the source for details.

Is MediaGoblin an official GNU project? What does that mean?

MediaGoblin is an official GNU project! This status means that we the
meet the GNU Project’s rigorous standards for free software. To find
out more about what that means, check out the GNU website [http://gnu.org/].

Please feel free to contact us with further questions!

Deploying MediaGoblin

This deployment guide will take you step-by-step through
setting up your own instance of MediaGoblin.

MediaGoblin most likely isn’t yet available from your operating
system’s package manager, however, a basic install isn’t too complex in
and of itself. We recommend a setup that combines MediaGoblin,
virtualenv and Nginx on a .deb or .rpm-based GNU/Linux distribution.

Experts may of course choose other deployment options, including
Apache. See our Deployment wiki page [https://web.archive.org/web/20200817190402/https://wiki.mediagoblin.org/Deployment] for for more details.
Please note that we are not able to provide support for these
alternative deployment options.

Note

These tools are for site administrators wanting to deploy a fresh
install. If you want to join in as a contributor, see our
Hacking HOWTO [https://web.archive.org/web/20200817190402/https://wiki.mediagoblin.org/HackingHowto] instead.

Note

Throughout the documentation we use the sudo command to indicate that
an instruction requires elevated user privileges to run. You can issue
these commands as the root user if you prefer.

If you need help configuring sudo, see the
Debian wiki [https://wiki.debian.org/sudo/] or the
Fedora Project wiki [https://fedoraproject.org/wiki/Configuring_Sudo/].

Prepare System

Dependencies

MediaGoblin has the following core dependencies:

	Python 3.4+

	python3-lxml [http://lxml.de/]

	git [http://git-scm.com/]

	SQLite [http://www.sqlite.org/]/PostgreSQL [http://www.postgresql.org/]

	Python Imaging Library [http://www.pythonware.com/products/pil/] (PIL)

	virtualenv [http://www.virtualenv.org/]

	Node.js [https://nodejs.org]

These instructions have been tested on Debian 11 and Fedora 33. These
instructions should approximately translate to recent Debian
derivatives such as Ubuntu and Trisquel, and to relatives of Fedora
such as CentOS, but we haven’t explicitly tested these options.

Issue the following commands:

Debian 11
sudo apt update
sudo apt install automake git nodejs npm python3-dev \
python3-gst-1.0 python3-lxml python3-pil virtualenv

Fedora 33
sudo dnf install automake gcc git-core make nodejs npm \
libffi-devel python3-devel python3-lxml python3-pillow \
virtualenv

For a production deployment, you’ll also need Nginx as frontend web
server and RabbitMQ to store the media processing queue:

Debian
sudo apt install nginx-light rabbitmq-server

Fedora
sudo dnf install nginx rabbitmq-server

Configure PostgreSQL

Note

MediaGoblin currently supports PostgreSQL and SQLite. The default
is a local SQLite database. This will “just work” for small
deployments. For medium to large deployments we recommend
PostgreSQL. If you don’t want/need PostgreSQL, skip this section.

These are the packages needed for PostgreSQL:

Debian
sudo apt install postgresql python3-psycopg2

Fedora
sudo dnf install postgresql postgresql-server python3-psycopg2

Fedora also requires that you initialize and start the
PostgreSQL database with a few commands. The following commands are
not needed on a Debian-based platform, however:

Fedora
sudo /usr/bin/postgresql-setup initdb
sudo systemctl enable postgresql
sudo systemctl start postgresql

The installation process will create a new system user named postgres,
which will have privileges sufficient to manage the database. We will create a
new database user with restricted privileges and a new database owned by our
restricted database user for our MediaGoblin instance.

In this example, the database user will be mediagoblin and the database
name will be mediagoblin too. We’ll first at the user:

sudo --login --user=postgres createuser --no-createdb mediagoblin

Then we’ll create the database where all of our MediaGoblin data will be stored:

sudo --login --user=postgres createdb --encoding=UTF8 --owner=mediagoblin mediagoblin

Caution

Where is the password?

These steps enable you to authenticate to the database in a password-less
manner via local UNIX authentication provided you run the MediaGoblin
application as a user with the same name as the user you created in
PostgreSQL.

More on this in Drop Privileges for MediaGoblin.

Drop Privileges for MediaGoblin

MediaGoblin does not require special permissions or elevated
access to run. As such, the preferred way to run MediaGoblin is to
create a dedicated, unprivileged system user for the sole purpose of running
MediaGoblin. Running MediaGoblin processes under an unprivileged system user
helps to keep it more secure.

The following command will create a system account with a username of
mediagoblin.

If you are using a Debian-based system, enter this command:

Debian
sudo useradd --system --create-home --home-dir /var/lib/mediagoblin \
--group www-data --comment 'GNU MediaGoblin system account' mediagoblin

Fedora
sudo useradd --system --create-home --home-dir /var/lib/mediagoblin \
--group nginx --comment 'GNU MediaGoblin system account' mediagoblin

This will create a mediagoblin user and assign it to a group that is
associated with the web server. This will ensure that the web server can
read the media files that users upload (images, videos, etc.)

Many operating systems will automatically create a group
mediagoblin to go with the new user mediagoblin, but just to
be sure:

sudo groupadd --force mediagoblin
sudo usermod --append --groups mediagoblin mediagoblin

No password will be assigned to this account, and you will not be able
to log in as this user. To switch to this account, enter:

sudo su mediagoblin --shell=/bin/bash

To return to your regular user account after using the system account, type
exit or Ctrl-d.

Create a MediaGoblin Directory

You should create a working directory for MediaGoblin. This document
assumes your local git repository will be located at
/srv/mediagoblin.example.org/mediagoblin/.
Substitute your preferred local deployment path as needed.

Setting up the working directory requires that we first create the directory
with elevated privileges, and then assign ownership of the directory
to the unprivileged system account.

To do this, enter the following commands, changing the defaults to suit your
particular requirements:

Debian
sudo mkdir --parents /srv/mediagoblin.example.org
sudo chown --no-dereference --recursive mediagoblin:www-data /srv/mediagoblin.example.org

Fedora
sudo mkdir --parents /srv/mediagoblin.example.org
sudo chown --no-dereference --recursive mediagoblin:nginx /srv/mediagoblin.example.org

Install MediaGoblin and Virtualenv

We will now switch to our ‘mediagoblin’ system account, and then set up
our MediaGoblin source code repository and its necessary services.
You should modify these commands to suit your own environment.

Switch to the mediagoblin unprivileged user and change to the
MediaGoblin directory that you just created:

sudo su mediagoblin --shell=/bin/bash
$ cd /srv/mediagoblin.example.org

Note

Unless otherwise noted, the remainder of this document assumes that all
operations are performed using the unprivileged mediagoblin
account, indicated by the $ prefix.

Clone the MediaGoblin repository and set up the git submodules:

$ git clone --depth=1 https://git.savannah.gnu.org/git/mediagoblin.git \
 --branch stable --recursive
$ cd mediagoblin

Set up the environment:

$./bootstrap.sh
$./configure
$ make

Create and set the proper permissions on the user_dev directory.
This directory will be used to store uploaded media files:

$ mkdir --mode=2750 user_dev

This concludes the initial configuration of the MediaGoblin
environment. In the future, you can upgrade MediaGoblin according to
the “Upgrading MediaGoblin” documentation.

Configure Mediagoblin

Edit site configuration

Edit mediagoblin.ini and update email_sender_address to the
address you wish to be used as the sender for system-generated emails.
You’ll find more details in “Configuring MediaGoblin”.

Note

If you’re changing the MediaGoblin directories or URL prefix, you
may need to edit direct_remote_path, base_dir, and
base_url.

Configure MediaGoblin to use the PostgreSQL database

If you are using PostgreSQL, edit the [mediagoblin] section in your
mediagoblin.ini and remove the # prefix on the line containing:

sql_engine = postgresql:///mediagoblin

This assumes you are running the MediaGoblin application under the
same system account and database account; both mediagoblin.

Update database data structures

Before you start using the database, you need to run:

$./bin/gmg dbupdate

to populate the database with the MediaGoblin data structures.

Create an admin account

Create a MediaGoblin account with full administration access. Provide
your own email address and enter a secure password when prompted:

$./bin/gmg adduser --username you --email you@example.com
$./bin/gmg makeadmin you

Test the Server

At this point MediaGoblin should be properly installed. You can
test the deployment with the following command:

$./lazyserver.sh --server-name=broadcast

You should be able to connect to the machine on port 6543 in your
browser to confirm that the service is operable. You should also be
able to log in with the admin username and password.

Type Ctrl-c to exit the above server test.

The next series of commands will need to be run as a privileged user.
To return to your regular user account after using the system account,
type exit or Ctrl-d.

Deploy MediaGoblin

Nginx as a reverse-proxy

This configuration example will use Nginx, however, you may use any
webserver of your choice. If you do not already have a web server,
consider Nginx, as the configuration files may be more clear than the
alternatives.

Create a configuration file at
/srv/mediagoblin.example.org/nginx.conf and create a symbolic link
into a directory that will be included in your nginx configuration
(e.g. “/etc/nginx/sites-enabled or /etc/nginx/conf.d) with the
following commands:

Debian
sudo ln --symbolic /srv/mediagoblin.example.org/nginx.conf /etc/nginx/sites-enabled/mediagoblin.conf
sudo rm --force /etc/nginx/sites-enabled/default
sudo systemctl enable nginx

Fedora
sudo ln -s /srv/mediagoblin.example.org/nginx.conf /etc/nginx/conf.d/mediagoblin.conf
sudo systemctl enable nginx

You can modify these commands and locations depending on your
preferences and the existing configuration of your Nginx instance. The
contents of this /srv/mediagoblin.example.org/nginx.conf file
should be modeled on the following:

server {
 ###
 # Stock useful config options, but ignore them :)
 ###
 include /etc/nginx/mime.types;

 autoindex off;
 default_type application/octet-stream;
 sendfile on;

 # Gzip
 gzip on;
 gzip_min_length 1024;
 gzip_buffers 4 32k;
 gzip_types text/plain application/x-javascript text/javascript text/xml text/css;

 #####################################
 # Mounting MediaGoblin stuff
 # This is the section you should read
 #####################################

 # Change this to allow your users to upload larger files. If
 # you enable audio or video you will need to increase this. This
 # is essentially a security setting to prevent *extremely* large
 # files being uploaded. Example settings include 500m and 1g.
 client_max_body_size 100m;

 # prevent attacks (someone uploading a .txt file that the browser
 # interprets as an HTML file, etc.)
 add_header X-Content-Type-Options nosniff;

 server_name mediagoblin.example.org www.mediagoblin.example.org;
 access_log /var/log/nginx/mediagoblin.example.access.log;
 error_log /var/log/nginx/mediagoblin.example.error.log;

 # MediaGoblin's stock static files: CSS, JS, etc.
 location /mgoblin_static/ {
 alias /srv/mediagoblin.example.org/mediagoblin/mediagoblin/static/;
 }

 # Instance specific media:
 location /mgoblin_media/ {
 alias /srv/mediagoblin.example.org/mediagoblin/user_dev/media/public/;
 }

 # Theme static files (usually symlinked in)
 location /theme_static/ {
 alias /srv/mediagoblin.example.org/mediagoblin/user_dev/theme_static/;
 }

 # Plugin static files (usually symlinked in)
 location /plugin_static/ {
 alias /srv/mediagoblin.example.org/mediagoblin/user_dev/plugin_static/;
 }

 # Forward requests to the MediaGoblin app server.
 location / {
 proxy_pass http://127.0.0.1:6543;
 # On Debian and derivatives the below proxy_set_header lines can be replaced by:
 # include proxy_params;
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

The first four location directives instruct Nginx to serve the
static and uploaded files directly rather than through the MediaGoblin
process. This approach is faster and requires less memory.

Note

The user who owns the Nginx process, normally www-data or nginx,
requires execute permission on the directories static,
public, theme_static and plugin_static plus all their
parent directories. This user also requires read permission on all
the files within these directories. This is normally the default.

Nginx is now configured to serve the MediaGoblin application. Perform a quick
test to ensure that this configuration works:

sudo nginx -t

If you encounter any errors, review your Nginx configuration files, and try to
resolve them. If you do not encounter any errors, you can start your Nginx
server (may vary depending on your operating system):

sudo systemctl restart nginx

Now start MediaGoblin to test your Nginx configuration:

sudo su mediagoblin --shell=/bin/bash
$ cd /srv/mediagoblin.example.org/mediagoblin/
$./lazyserver.sh --server-name=main

You should be able to connect to the machine on port 80 in your
browser to confirm that the service is operable. If this is the
machine in front of you, visit <http://localhost/> or if it is a
remote server visit the URL or IP address provided to you by your
hosting provider. You should see MediaGoblin; this time via Nginx!

Try logging in and uploading an image. If after uploading you see any
“Forbidden” errors from Nginx or your image doesn’t show up, you may
need to update the permissions on the new directories MediaGoblin has
created:

Debian
sudo chown --no-dereference --recursive mediagoblin:www-data /srv/mediagoblin.example.org
sudo find /srv/mediagoblin.example.org -type d -exec chmod 755 {} \;
sudo find /srv/mediagoblin.example.org -type f -exec chmod 644 {} \;
sudo find /srv/mediagoblin.example.org/mediagoblin/user_dev/crypto -type d -exec chmod 750 {} \;
sudo find /srv/mediagoblin.example.org/mediagoblin/user_dev/crypto -type f -exec chmod 640 {} \;
sudo find /srv/mediagoblin.example.org/mediagoblin/bin -type f -exec chmod 750 {} \;

Fedora
sudo chown --no-dereference --recursive mediagoblin:nginx /srv/mediagoblin.example.org
sudo find /srv/mediagoblin.example.org -type d -exec chmod 755 {} \;
sudo find /srv/mediagoblin.example.org -type f -exec chmod 644 {} \;
sudo find /srv/mediagoblin.example.org/mediagoblin/user_dev/crypto -type d -exec chmod 750 {} \;
sudo find /srv/mediagoblin.example.org/mediagoblin/user_dev/crypto -type f -exec chmod 640 {} \;
sudo find /srv/mediagoblin.example.org/mediagoblin/bin -type f -exec chmod 750 {} \;

Note

If you see an Nginx placeholder page, you may need to remove the
Nginx default configuration, or explictly set a server_name
directive in the Nginx config.

Type Ctrl-c to exit the above server test and exit or
Ctrl-d to exit the mediagoblin shell.

Run MediaGoblin as a system service

To ensure MediaGoblin is automatically started and restarted in case
of problems, we need to run it as system services. If your operating
system uses Systemd, you can use Systemd service files to manage
both the Celery and Paste processes as described below.

In the Systemd configuration below, MediaGoblin log files are kept in
the /var/log/mediagoblin directory. Create the directory and give
it the proper permissions:

sudo mkdir --parents /var/log/mediagoblin
sudo chown --no-dereference --recursive mediagoblin:mediagoblin /var/log/mediagoblin

Place the following service files in the /etc/systemd/system/
directory. The first file should be named
mediagoblin-paster.service. Be sure to modify it to suit your
environment’s setup:

Set the WorkingDirectory and Environment values to match your environment.
[Unit]
Description=Mediagoblin

[Service]
Type=simple
User=mediagoblin
Group=mediagoblin
Environment=CELERY_ALWAYS_EAGER=false
WorkingDirectory=/srv/mediagoblin.example.org/mediagoblin
ExecStart=/srv/mediagoblin.example.org/mediagoblin/bin/paster serve \
 /srv/mediagoblin.example.org/mediagoblin/paste.ini \
 --log-file=/var/log/mediagoblin/mediagoblin.log \
 --server-name=main

[Install]
WantedBy=multi-user.target

The second file should be named mediagoblin-celeryd.service:

Set the WorkingDirectory and Environment values to match your environment.
[Unit]
Description=MediaGoblin Celery
After=rabbitmq-server.service

[Service]
User=mediagoblin
Group=mediagoblin
Type=simple
WorkingDirectory=/srv/mediagoblin.example.org/mediagoblin
Environment=MEDIAGOBLIN_CONFIG=/srv/mediagoblin.example.org/mediagoblin/mediagoblin.ini \
 CELERY_CONFIG_MODULE=mediagoblin.init.celery.from_celery
ExecStart=/srv/mediagoblin.example.org/mediagoblin/bin/celery worker \
 --logfile=/var/log/mediagoblin/celery.log \
 --loglevel=INFO

[Install]
WantedBy=multi-user.target

For details on this approach with a separate Celery process, see
Background Media Processing.

Enable these processes to start at boot by entering:

sudo systemctl enable mediagoblin-paster.service
sudo systemctl enable mediagoblin-celeryd.service

Start the processes for the current session with:

sudo systemctl start mediagoblin-paster.service
sudo systemctl start mediagoblin-celeryd.service

If either command above gives you an error, you can investigate the cause of
the error by entering either of:

sudo systemctl status mediagoblin-celeryd.service
sudo systemctl status mediagoblin-paster.service

Or view the full logs with:

sudo journalctl -u mediagoblin-paster.service -f
sudo journalctl -u mediagoblin-celeryd.service -f

The above systemctl status command is also useful if you ever want to
confirm that a process is still running.

Assuming the above was successful, you should now have a MediaGoblin
server that will continue to operate, even after being restarted.
Great job!

If you have a moment, please send us an email
about your experience installing MediaGoblin. We’d love to know what
worked well, what didn’t work so well and anything that could be
improved.

Restarting MediaGoblin

To restart MediaGoblin after making configuration changes, run:

sudo systemctl restart mediagoblin-celeryd.service
sudo systemctl restart mediagoblin-paster.service

If you make any changes to the “.service” files, you must first issue
a daemon-reload command to refresh Systemd and then restart
MediaGoblin with:

sudo systemctl daemon-reload
sudo systemctl restart mediagoblin-celeryd.service
sudo systemctl restart mediagoblin-paster.service

What next?

This configuration supports upload of images only, but MediaGoblin
also supports other types of media, such as audio, video, PDFs and 3D
models. For details, see “Media Types”.

See “Further Considerations for Production Deployments” for more information and other
issues you may want to consider.

For other settings and configuration options, see
“Configuring MediaGoblin”.

To enable and configure plugins, see “Plugins”.

Further Considerations for Production Deployments

This page extends upon our “Deploying MediaGoblin” guide to describe some common
issues affecting production deployments.

Should I Keep Open Registration Enabled?

Unfortunately, in this current release of MediaGoblin we are suffering
from spammers registering to public instances en masse. As such, you
may want to either:

	Disable registration on your instance and just make
accounts for people you know and trust (eg via the gmg adduser
command). You can disable registration in your mediagoblin.ini
like so:

[mediagoblin]
allow_registration = false

	Enable a CAPTCHA plugin. But unfortunately, though some CAPTCHA
plugins exist, for various reasons we do not have any general
recommendations we can make at this point.

We hope to have a better solution to this situation shortly. We
apologize for the inconvenience in the meanwhile.

Confidential Files

Warning

The directory user_dev/crypto/ contains confidential information. In
particular, the itsdangeroussecret.bin is important for the security of
login sessions. Make sure not to publish its contents anywhere. If the
contents gets leaked nevertheless, delete your file and restart the server,
so that it creates a new secret key. All previous login sessions will be
invalidated.

Background Media Processing

“Deploying MediaGoblin” covers use of a separate Celery process, but this sections
describes this in more detail.

MediaGoblin uses Celery [http://www.celeryproject.org/] to handle heavy and long-running tasks. Celery can
be launched in two ways:

	Embedded in the main MediaGoblin web application. This is the way
./lazyserver.sh does it for you. It’s simple as you only have to run one
process. The only bad thing with this is that the heavy and long-running
tasks will run in the webserver, keeping the user waiting each time some
heavy lifting is needed as in for example processing a video. This could lead
to problems as an aborted connection will halt any processing and since most
front-end web servers will terminate your connection if it doesn’t get any
response from the MediaGoblin web application in a while. This approach is
suitable for development, small sites or when primarily using command
line uploads.

	As a separate web application and media processing application
(recommended). In this approach, the MediaGoblin web application delegates
all media processing to a task queue via a broker [http://docs.celeryproject.org/en/latest/getting-started/brokers/] (task queue). This is
the approach used in our deployment guide, with RabbitMQ
as the broker. This offloads the heavy lifting from the MediaGoblin web
application and users will be able to continue to browse the site while the
media is being processed in the background. This approach provided the best
user experience and is recommended for production sites.

The choice between these two behaviours is controlled by the
CELERY_ALWAYS_EAGER environment variable. Specifying true instructs
MediaGoblin to processing media within the web application while you wait.
Specifying false instructs MediaGoblin to use background processing.

Error Monitoring with Sentry

We have a plugin for raven [http://raven.readthedocs.org] integration, see the “raven plugin”
documentation.

Running multiple MediaGoblin instances on the same server

It is possible to run multiple separate MediaGoblin instances concurrently on
the same server. We don’t provide detailed instructions to do this, but broadly,
each instance will need:

	A separate mediagoblin.ini and paste.ini.

	A separate database that is configured in mediagoblin.ini.

	A unique CELERY_DEFAULT_QUEUE configured in mediagoblin.ini. Queues
are automatically created, but must be unique between MediaGoblin instances.

	A separate data directory created and configured in mediagoblin.ini and
paste.ini.

	A unique server port configured in paste.ini under [server:broadcast].

You would typically configure the web server to route requests to the
appropriate MediaGoblin instance port based on the requested domain name or
something similar.

It is also possible to share the same MediaGoblin codebase and Python virtualenv
between multiple instances, so long as they have a unique data directory.

Configuring MediaGoblin

So! You’ve got MediaGoblin up and running, but you need to adjust
some configuration parameters. Well you’ve come to the right place!

MediaGoblin’s config files

There are two main files used to configure MediaGoblin:

	mediagoblin.ini

	This is the main config file for MediaGoblin. If you want to tweak any
settings for MediaGoblin, you’ll usually do that here. This file is copied
from mediagoblin.example.ini the first time MediaGoblin runs. Keep this in
mind if you ever need to refer back to the original settings.

	paste.ini

	This is primarily a server configuration file, on the Python side
(specifically, on the WSGI side, via paste deploy [http://pythonpaste.org/deploy/] / paste script [http://pythonpaste.org/script/]). It also sets up some
middleware that you can mostly ignore, except to configure
sessions… more on that later. If you are adding a different
Python server other than Waitress / plain HTTP, you might configure it
here. You probably won’t need to change this file very much.

Changes to these two files only take effect after restarting MediaGoblin. If you
followed your deployment guide, see the section on restarting MediaGoblin. If you’re using lazyserver.sh or
lazycelery.sh, first quit with Ctrl-c and then re-run the command.

Enabling extra media types or plugins may require an update to the database, so
after making changes, it is also a good idea to run:

$./bin/gmg dbupdate

Common changes

Enabling email notifications

You’ll almost certainly want to enable sending email. By default,
MediaGoblin doesn’t really do this… for the sake of developer
convenience, it runs in “email debug mode”.

To make MediaGoblin send email, you need a mailer daemon.

Change this in your mediagoblin.ini file:

email_debug_mode = false

You should also change the “from” email address by setting
email_sender_address. For example:

email_sender_address = "foo@example.com"

If you have more custom SMTP settings, you also have the following
options at your disposal, which are all optional, and do exactly what
they sound like.

	email_smtp_host

	email_smtp_port

	email_smtp_user

	email_smtp_pass

	email_smtp_use_ssl (default is False)

	email_smtp_force_starttls (default is False)

Changing the data directory

MediaGoblin by default stores your data in wherever data_basedir.
This can be changed by changing the value in your mediagoblin.ini file
for example:

[DEFAULT]
data_basedir = "/var/mediagoblin/user_data"

For efficiency reasons MediaGoblin doesn’t serve these files itself and
instead leaves that to the webserver. You will have to alter the location
to match the path in data_basedir.

If you use lazyserver.sh you need to change the paste.ini file:

[app:mediagoblin]
/mgoblin_media = /var/mediagoblin/user_data

If you use Nginx you need to change the config:

Instance specific media:
location /mgoblin_media/ {
 alias /var/mediagoblin/user_data;
}

Once you have done this you will need to move any existing media you had in the
old directory to the new directory so existing media still can be displayed.

Displaying camera EXIF metadata

To display available EXIF metadata, set exif_visible = true in the
[mediagoblin] section of your mediagoblin.ini file:

[mediagoblin]

exif_visible = true

All other configuration changes

There are a number of other settings which aren’t documented here. Currently,
the best reference for these options is mediagoblin/config_spec.ini and the
additional config specifications for each media type eg.
mediagoblin/media_types/video/config_spec.ini. These files are the
specification for mediagoblin.ini and define the types and default values
for each configuration option.

Upgrading MediaGoblin

Preparation

ALWAYS take a backup before upgrading, especially before running migrations. That
way if something goes wrong, we can fix things.

Although not strictly necessary, we recommend you shut down your current
MediaGoblin/Celery processes before upgrading.

Upgrade

	Switch to the user you used to deploy MediaGoblin, which may be “mediagoblin”
if you followed the deployment guide:

sudo su mediagoblin --shell=/bin/bash

	Update to the latest release. In your mediagoblin directory, run:

git fetch && git checkout -q v0.12.1 && git submodule update

	Note down any plugins you have installed by reviewing your
mediagoblin.ini configuration. These will be removed by the following
steps and must be re-installed.

	Remove your existing installation:

make distclean

	Recreate the virtual environment and install MediaGoblin:

./bootstrap.sh && ./configure && make

You may need to update file permissions as mentioned in “Deploying MediaGoblin”.

	Re-install any “Plugins” you had previously installed. Skipping these
may result in errors updating the database.

	Update the database:

./bin/gmg dbupdate

	Restart the Paster and Celery processes. If you followed “Deploying MediaGoblin”,
this may be something like:

sudo systemctl restart mediagoblin-paster.service
sudo systemctl start mediagoblin-celeryd.service

To see the logs for troubleshooting, use something like:

sudo journalctl -u mediagoblin-paster.service -f
sudo journalctl -u mediagoblin-celeryd.service -f

	View your site and hover your cursor over the “MediaGoblin” link in the
footer to confirm the version number you’re running.

Updating your system Python

Upgrading your operating system or installing a new major version of Python may
break MediaGoblin. This typically occurs because Python virtual environment is
referring to a copy of Python that no longer exists. In this situation use the
same process for “Upgrade” above.

Troubleshooting

Sometimes it doesn’t all go to plan! This page describes some of the problems
that community members have reported and how to fix them.

TypeError: object() takes no parameters

Backtrace:

2021-04-04 06:04:55,244 WARNING [mediagoblin.processing] No idea what happened here, but it failed: TypeError('object() takes no parameters',)
2021-04-04 06:04:55,262 ERROR [waitress] Exception while serving /submit/
...
File "/opt/mediagoblin/mediagoblin/media_types/video/transcoders.py", line 338, in __setup_videoscale_capsfilter
 caps_struct.set_value('pixel-aspect-ratio', Gst.Fraction(1, 1))
TypeError: object() takes no parameters

This is caused by not having the package python3-gst-1.0 on Debian:

http://gstreamer-devel.966125.n4.nabble.com/How-to-use-Gst-Fraction-in-python-td4679228.html

alembic.util.exc.CommandError: Can’t locate revision identified by ‘e9212d3a12d3’

This is caused when you’ve enabled a plugin, run dbupdate and then disabled the
plugin again. Currently we recommend reinstalling the plugin, but we understand
this is not ideal. See the outstanding issue raised here:

https://issues.mediagoblin.org/ticket/5447

It’s possible that manually manipulating the alembic_version table may help
you, but that approach is only recommended for experienced developers.

Media Types

In the future, there will be all sorts of media types you can enable,
but in the meanwhile there are six additional media types: video, audio,
raw image, ASCII art, STL/3D models, PDF and Document.

First, you should probably read “Configuring MediaGoblin” to make sure
you know how to modify the MediaGoblin config file.

Enabling Media Types

Note

Media types are now plugins

Media types are enabled in your MediaGoblin configuration file.

Most media types require additional dependencies that you will have to install. You
will find descriptions on how to satisfy the requirements of each media type
below.

To enable a media type, add the the media type under the [plugins] section
in you mediagoblin.ini. For example, if your system supported image
and video media types, then it would look like this:

[plugins]
[[mediagoblin.media_types.image]]
[[mediagoblin.media_types.video]]

Note that after enabling new media types, you must run dbupdate. If you have
deployed MediaGoblin as an unprivileged user as described in
“Further Considerations for Production Deployments”, you’ll first need to switch to this account:

sudo su mediagoblin --shell=/bin/bash
$ cd /srv/mediagoblin.example.org/mediagoblin

Now run dbupdate:

$./bin/gmg dbupdate

If you are running an active site, depending on your server
configuration, you may need to stop it first (and it’s certainly a
good idea to restart it after the update).

How does MediaGoblin decide which media type to use for a file?

MediaGoblin has two methods for finding the right media type for an uploaded
file. One is based on the file extension of the uploaded file; every media type
maintains a list of supported file extensions. The second is based on a sniffing
handler, where every media type may inspect the uploaded file and tell if it
will accept it.

The file-extension-based approach is used before the sniffing-based approach,
if the file-extension-based approach finds a match, the sniffing-based approach
will be skipped as it uses far more processing power.

Configuring Media Types

Each media type has a config_spec.ini file with configurable
options and comments explaining their intended side effect. For
instance the video media type configuration can be found in
mediagoblin/media_types/video/config_spec.ini.

Audio

To enable audio, install the GStreamer and python-gstreamer bindings (as well
as whatever GStreamer plugins you want, good/bad/ugly):

Debian
sudo apt install python3-gst-1.0 gstreamer1.0-plugins-{base,bad,good,ugly} \
gstreamer1.0-libav python3-numpy

Fedora
sudo dnf install gstreamer1-plugins-{base,bad-free,good,ugly-free} \
python3-numpy

Add [[mediagoblin.media_types.audio]] under the [plugins] section in your
mediagoblin.ini and update MediaGoblin:

$./bin/gmg dbupdate

Restart MediaGoblin (and Celery if applicable). You should now be able to upload
and listen to audio files!

On production deployments, you will need to increase Nginx’s
client_max_body_size to allow larger files to be uploaded, or you’ll get a
“413 Request Entity Too Large” error. See “Nginx as a reverse-proxy”.

Production deployments will also need a separate process to transcode media in
the background. See “Run MediaGoblin as a system service” and
“Background Media Processing” sections of this manual.

Video

To enable video, first install GStreamer and the python-gstreamer
bindings (as well as whatever GStreamer extensions you want,
good/bad/ugly):

Debian
sudo apt install python3-gi gstreamer1.0-tools gir1.2-gstreamer-1.0 \
gir1.2-gst-plugins-base-1.0 gstreamer1.0-plugins-{base,bad,good,ugly} \
gstreamer1.0-libav python3-gst-1.0

Fedora
sudo dnf install gstreamer1-plugins-{base,bad-free,good,ugly-free,openh264} \
python3-gobject python3-gstreamer1

Add [[mediagoblin.media_types.video]] under the [plugins] section in
your mediagoblin.ini and restart MediaGoblin.

Run:

$./bin/gmg dbupdate

Restart MediaGoblin (and Celery if applicable). Now you should be able to submit
videos, and MediaGoblin should transcode them.

On production deployments, you will need to increase Nginx’s
client_max_body_size to allow larger files to be uploaded, or you’ll get a
“413 Request Entity Too Large” error. See “Nginx as a reverse-proxy”.

Production deployments will also need a separate process to transcode media in
the background. To set that up, check out the “Deploying MediaGoblin” and
“Further Considerations for Production Deployments” sections of this manual.

Configuring video

	available_resolutions

	The list of resolutions that the video should be transcoded to, in the order
of transcoding. Choose among 144p, 240p, 360p, 480p, 720p
and 1080p. The default is 480p,360p,720p.

	default_resolution

	This is the initial resolution used by the video player. The default is
480p. For example:

[[mediagoblin.media_types.video]]
available_resolutions = 144p,240p
default_resolution = 144p

Raw image

MediaGoblin can extract and display the JPEG preview from RAW images.

To enable raw image you need to install the Python library py3exiv2. This
library is not currently available for Debian 11 but can be installed from the
Python Package Index after installing the build dependencies:

Debian 11
sudo apt install libexiv2-dev libboost-python-devn
./bin/pip install py3pyexiv2

Debian 12 (currently not released)
sudo apt install python3-pyexiv2

Add [[mediagoblin.media_types.raw_image]] under the [plugins]
section in your mediagoblin.ini and restart MediaGoblin.

Run:

./bin/gmg dbupdate

Restart MediaGoblin (and Celery if applicable). You should now be able to submit
raw images.

ASCII art

To enable ASCII art support, first install the
chardet [http://pypi.python.org/pypi/chardet]
library, which is necessary for creating thumbnails of ASCII art:

$./bin/easy_install chardet

Next, modify your mediagoblin.ini. In the [plugins] section, add
[[mediagoblin.media_types.ascii]].

Run:

$./bin/gmg dbupdate

Restart MediaGoblin (and Celery if applicable). Now any .txt file you uploaded
will be processed as ASCII art!

STL / 3D model support

To enable the “STL” 3D model support plugin, first make sure you have
a recent Blender [http://blender.org] installed and available on
your execution path. This feature has been tested with Blender 2.63.
It may work on some earlier versions, but that is not guaranteed (and
is surely not to work prior to Blender 2.5X).

Add [[mediagoblin.media_types.stl]] under the [plugins] section in your
mediagoblin.ini and restart MediaGoblin.

Run:

$./bin/gmg dbupdate

Restart MediaGoblin (and Celery if applicable). You should now be able to upload
.obj and .stl files and MediaGoblin will be able to present them to your wide
audience of admirers!

PDF and Document

To enable the “PDF and Document” support plugin, you need:

	pdftocairo and pdfinfo for PDF only support.

	unoconv with headless support to support converting LibreOffice supported
documents as well, such as doc/ppt/xls/odf/odg/odp and more.
For the full list see mediagoblin/media_types/pdf/processing.py,
unoconv_supported.

All executables must be on your execution path.

To install this on Fedora:

sudo dnf install poppler-utils unoconv libreoffice-headless

Note: You can leave out unoconv and libreoffice-headless if you want only PDF
support. This will result in a much smaller list of dependencies.

pdf.js relies on git submodules, so be sure you have fetched them:

$ git submodule update --init

	This feature has been tested on Fedora with:

	poppler-utils-0.20.2-9.fc18.x86_64
unoconv-0.5-2.fc18.noarch
libreoffice-headless-3.6.5.2-8.fc18.x86_64

It may work on some earlier versions, but that is not guaranteed.

Add [[mediagoblin.media_types.pdf]] under the [plugins] section in your
mediagoblin.ini and restart MediaGoblin.

Run:

$./bin/gmg dbupdate

Blog (HIGHLY EXPERIMENTAL)

MediaGoblin has a blog media type, which you might notice by looking
through the docs! However, it is highly experimental. We have not
security reviewed this, and it acts in a way that is not like normal
blogs (the blog posts are themselves media types!).

So you can play with this, but it is not necessarily recommended yet
for production use! :)

How to Get Help with MediaGoblin

There are a couple of ways to get help with problems with MediaGoblin:

	ask for help on IRC

	ask for help on the devel mailing list

Details for both IRC and the mailing list are on the join page [http://mediagoblin.org/join/] of the
website.

Release Notes

This chapter has important information about our current and previous releases.

0.12.1

This patch release fixes a number of Python dependency issues, allows us to
support newer autoconf versions, fixes a few small bugs and improves the
documentation.

This release has been tested on Debian Bullseye (11) and Ubuntu 20.04. Due to a
dependency issue, we unfortunately don’t yet support Python 3.10, which
means that Debian Bookworm and Ubuntu 22.04 and Fedora 36 are not yet
supported. This will be addressed in the upcoming version 0.13.0. This will be
the last release to support Python 3.5.

Upgrading:

For detailed instructions on installing or upgrading, see “Upgrading MediaGoblin” and
“Deploying MediaGoblin”.

If you have any problems, please drop in to the #mediagoblin IRC chat [https://web.libera.chat/#mediagoblin], report an issue on our issue
tracker [https://todo.sr.ht/~mediagoblin/mediagoblin] or drop us an email to
mediagoblin-devel@gnu.org.

Changes:

	Convert README to Markdown for better display on SourceHut, add goblin, fix links (Ben Sturmfels)

	Add a troubleshooting page to the docs. (Ben Sturmfels)

	Fix incorrect setuptools install location for db/migrations/env.py (Elisei Roca)

	Add a “Troubleshooting” page to the documentation (Ben Sturmfels)

	Add Ubuntu 20.04 CI build (Ben Sturmfels)

	Add cc0 license to guix package (jgart)

	Add instructions to set permissions on installation directories (Ben Sturmfels)

	Switch from py-bcrypt to bcrypt (Elisei Roca)

	Explicitly specify we don’t support Python 3.10 yet (Olivier Mehani)

Bug fixes:

	Fix references to non-existent package.json [trac#5615] (Ben Sturmfels)

	Remove unneeded shebang from test_processing.py (Elisei Roca)

	Fix incorrect setuptools install location for db/migrations/env.py (Elisei Roca)

	Pin version of jinja2 dependency to avoid AttributeError and Ubuntu installation issues (Dan Helfman, Olivier Mehani)

	Add support for autoconf > 2.69 [srht#12] (Peter Horvath)

	Switch to pytest –forked for parallel test runs as pytest-xdist 3.0.2 dropped –boxed (Ben Sturmfels)

	Fix encoding of passwords before hashing (Olivier Mehani)

	Fix remaining bcrypt issue (Olivier Mehani, Elisei Roca)

	Document need for Nginx proxy_set_header Host config [trac#5612] (Ben Sturmfels)

0.12.0

This release resolves two significant issues in the Celery backend media
processing. The first was causing processed media to be marked as failed and the
second was inhibiting useful error messages. We’ve also
resolved installation issues caused by deprecated upstream code in the Werkzeug
and jsonschema libraries.

We’ve added provisional gmg serve and gmg celery commands to simplify
deployment. These commands may change in the future and are not yet recommended
in the deployment documentation. If your deployment is already running smoothly,
there’s no reason to switch at this stage.

Please note that installation currently fails on Debian Testing (Bookworm) and
Arch Linux at ./configure. These issues appear to be related to versions of
autoconf > 2.69. We currently recommend deployment on Debian Bullseye and
Fedora 33.

Upgrading:

For detailed instructions on installing or upgrading, see “Upgrading MediaGoblin” and
“Deploying MediaGoblin”.

If you have any problems, please drop in to the #mediagoblin IRC chat [https://web.libera.chat/#mediagoblin], report an issue on our issue
tracker [https://todo.sr.ht/~mediagoblin/mediagoblin] or drop us an email to
mediagoblin-devel@gnu.org.

Improvements:

	Improve usability of report handling page (Rodrigo Martins)

	Remove –system-site-packages from ./configure in docs and CI builds as it
is forced anyway (Ben Sturmfels)

	Added provisional gmg serve and gmg celery commands (Ben Sturmfels)

	Switch Atom feeds from deprecated werkzeug.contrib.atom to feedgenerator,
upgrade werkzeug (Ben Sturmfels)

	Document that gmg dbupdate is required after some config changes (Rodrigo
Martins)

	Remove Debian 10 development Dockerfile (BenSturmfels)

	Add Debian 11 development Dockerfile and CI build (Ben Sturmfels)

	Fix/document Guix setup for 100% passing test suite (Ben Sturmfels)

	Convert setup.py to setup.cfg (Ben Sturmfels)

	Document re-installation of plugins during upgrade [#5611] (Ben Sturmfels)

	Remove unused extlib/flask-wtf code (Ben Sturmfels)

	Remove unused translitcodec dependency (Ben Sturmfels)

	Remove references to previous tinymce JS dependency (Ben Sturmfels)

	Remove plugin for decommissioned Mozilla Persona (Jgart)

	Document running multiple MediaGoblin instances on one server (Ben Sturmfels)

	Begin conversion from jQuery to vanilla JS (Ben Sturmfels)

Bug fixes:

	Fix images being marked as failed after Celery restart since 0.10.0 [#5608] (Ben Sturmfels)

	Fix app logging calls not showing in Celery logs (Ben Sturmfels)

	Fix test suite on Debian 11 (Ben Sturmfels)

	Remove reference to jsonschema.compat no longer available upstream (Marco Pessotto)

0.11.0

Following our final Python 2-compatible release of 0.10.0, this release drops
support for Python 2 and removes all Python 2 compatibility code.

This release also reinstates audio spectrograms with a completely rewritten
Python 3 replacement for the previous Python 2-only audio feature by Fernando
Gutierrez.

Upgrading:

For detailed instructions on installing or upgrading, see “Deploying MediaGoblin” and
“Upgrading MediaGoblin”.

If you have any problems, please drop in to the #mediagoblin IRC chat [https://webchat.freenode.net/#mediagoblin], report an issue on our issue
tracker [https://issues.mediagoblin.org/] or drop us an email to
mediagoblin-devel@gnu.org.

Improvements:

	Run test for LDAP, OpenID and PDF plugins in development Dockerfiles (Ben Sturmfels)

	Add Debian and Fedora CI builds for sourcehut (Jesús E, Ben Sturmfels)

	Extend Fedora install docs and development Dockerfile to support audio/video (Ben Sturmfels)

	Remove Python 2 installation and compatibility code (Ben Sturmfels)

	Reinstate Python 3 audio spectrograms [#5610] (Fernando Gutierrez)

Bug fixes:

	Fix missing download link for videos uploaded after 0.10.0 [#5620] (Ben Sturmfels)

	Fix raw image plugin installation instruction [#5523] (Ben Sturmfels)

	Pin sqlalchemy to fix due to changed internals [#5624] (Charlotte Koch)

	Fix test suite to pass 100% (Ben Sturmfels)

	Make LDAP plugin Python 3 compatible [#5607] (Olivier Mehani)

	Support blank titles in Atom feed [#1018] (Ben Sturmfels)

	Avoid Celery/RabbitMQ “connection reset” errors [#5609] (Fernando Gutierrez)

	Fix Mac dev setup issues [#5442] (Jeremy Bowman)

	Pin a compatible version of WTForms (milquetoast)

0.10.0

This release includes video subtitles and multiple video qualities and a swathe
of smaller improvements and bug-fixes listed below.

Python 3 is now the default when you install MediaGoblin and is strongly
recommended. Python 2 installation is still supported in this release with
./configure –without-python3, but support will likely be removed in the next
release.

FastCGI support has now been deprecated and removed from the documentation as
our dependency flup does not support Python 3.

Upgrading:

For detailed instructions on installing or upgrading, see “Deploying MediaGoblin” and
“Upgrading MediaGoblin”.

If you have any problems, please drop in to the #mediagoblin IRC chat [https://webchat.freenode.net/#mediagoblin], report an issue on our issue
tracker [https://issues.mediagoblin.org/] or drop us an email to
mediagoblin-devel@gnu.org.

Highlights:

	New video subtitles plugin (Saksham Agrawal) see [mailing list post](https://lists.gnu.org/archive/html/mediagoblin-devel/2016-08/msg00002.html)

	Multiple video qualities (Vijeth Aradhya), see [blog post](https://vijetharadhya.wordpress.com/2017/08/24/gsoc-17-wrap-up-gnu-mediagoblin/)

Smaller improvements:

	Make the user panel default to open and remember preference in local storage (Matt Deal)

	Use OSM tiles in Geolocation plugin (Olivier Mehani)

	Add thumbnail image to Atom feed (Ben Sturmfels)

	Add links in site-admin documentation foreword (Alexandre Franke)

	Add media_titleinfo template hook (Andrew Browning)

	Add video icon to collection thumbnail (Andrew Browning)

	Use AJAX for posting comments (Vijeth Aradhya)

	Show transcoding progress (Vijeth Aradhya)

	Add collection option to ‘addmedia’ cli uploading (Stéphane Péchard)

	Add creator to filter collections (Stéphane Péchard)

	Add ARIA attributes to audio player (Boris Bobrov)

	Remove tinymce from dependencies (Boris Bobrov)

	Add register_captcha template hook (Andrew Browning)

	Switch to rabbitmq by default and in docs (Boris Bobrov)

	Log IP address for failed login (Andrew Browning)

	Handle collection in batchaddmedia command (Simen Heggestøyl)

	Allow API upload filename to be provided using custom header (Romain Porte)

	Add tags in API (view them and edit them) (Romain Porte)

	Remove use of mediagoblin_local.ini (Boris Bobrov)

	EXIF rotation to make the image portrait on demand (chrysn)

	Add moderation panel thumbnail header [#5563] (Andrew Browning)

	Add Creative Commons 4.0 licenses [#955] (Dpg)

	Add Python 2 & 3 Docker files for MediaGoblin hacking (Ben Sturmfels)

	Add Python 3 docker-compose recipe for MediaGoblin hacking (Ben Sturmfels)

	Add basic duplicate detection/prevention for batchaddmedia (Ben Sturmfels)

	Add datetime_format config option (Olivier Mehani)

	Extend install instructions for raven plugin (Ben Sturmfels)

	Add visual feedback on link hover (Muto)

	Document SSL/TLS SMTP options (Ben Sturmfels)

	Remove flup and fastcgi from documentation (Michael Lynch)

	Switch to Python 3 by default (Ben Sturmfels)

	Add Python 2 deprecation warning [#5598] (Ben Sturmfels)

	Review and update the deploment docs for Debian 10 and CentOS 8 [#5593] (Ben Sturmfels)

Bug fixes:

	Pass test paths to py.test via tox (Boris Bobrov)

	Length check for login form (Jonathan Sandoval)

	Add padding around form field labels (Josh Crompton)

	Fix unhelpful SMTP error (Johnathan Sandoval)

	Fix the blog_delete page for admins (宋文武)

	Fix add_message inconsistencies [#5451] (Andrew Browning)

	Handle no mail server configured (Jonathan Sandoval)

	Fixed ‘older’ and ‘newer’ arrows for rtl locales (Leah Velleman)

	Prevent erroring out in some cases of checking video metadata (Christopher Allan Webber)

	Cleanup to avoid duplicated get_upload_file_limits [#928] (Loic Dachary)

	Attempt to change email without login [#5462] (Andrew Browning)

	Fix text wrapping on thumbnail (Matt Deal)

	Modify setup.py version syntax to address #5464 (Andrew Browning)

	Fix Python 3 support in pagination (Ben Sturmfels)

	Fix typo in user processing panel (Andrew Browning)

	Fix text overflow in media headings [#664] (Andrew Browning)

	Removed line breaks around the verifier code (vijeth-aradhya)

	Fix UnicodeEncodeError in atom feed [#5500] (Andrew Browning)

	Commit session after alembic updates have finished (Boris Bobrov)

	Add cascade to blog mediatype [#5308] (Robert Smith)

	Remove mongodb-related stuff (Boris Bobrov)

	Remove exif from blog posts [#830] (Andrew Browning)

	Can’t delete blog post drafts [#5513] (ayleph)

	Fix add to Collection causes server error [#5514] (ayleph)

	Fix zero division error in exif.py [#5524] (Andrew Browning)

	Support Unicode characters in configuration values (Simen Heggestøyl)

	Make admin panel headers readable in Airy theme (Simen Heggestøyl)

	Port batchaddmedia command to Python 3 (Simen Heggestøyl)

	Fix location of host-meta.xml file [#5543] (Andrew Browning)

	Replaced /bin/celeryd by /bin/celery in lazycelery (Romain Porte)

	Prevent video plugin from processing svg [#934] (Andrew Browning)

	Process videos with incorrect date tags [#5409] (Andrew Browning)

	Fix 2 errors in editor views (ĎÚβĨŐÚŚ Dod)

	Fix server crash on blog about page [#5572] (Andrew Browning)

	Fix default gmg help message (Boris Bobrov)

	Remove requirement for the file to be with single dot in name (Boris Bobrov)

	Fix auth error and simplify url and email checks (Boris Bobrov)

	Finally fix url validator (Boris Bobrov)

	Always guess the same filetype (Boris Bobrov)

	Fix bulkupload documentation example (Ben Sturmfels)

	Fix URL-based importing with batchaddmedia command (Ben Sturmfels)

	Update metadata_display plugin for Python 3 (Ben Sturmfels)

	Various Guix-related installation fixes/updates (Ben Sturmfels)

	Even up top/bottom margins around header dropdown button (Ben Sturmfels)

	Prevent warning when importing GstPbutils (Ben Sturmfels)

	Pin werkzeug < 1.0.0, handle moved SharedDataMiddleware in werkzeug >= 0.15.0 (Ben Sturmfels)

	Remove audio spectrograms due to instability and lack of Python 3 support (Ben Sturmfels)

	Decode request.query_string before use (Ben Sturmfels)

	Pin jinja2<3.0.0 due to use of f-strings (Ben Sturmfels)

	Fix “KeyError: ‘No such transport: sqlite. Did you mean sqla?’” in tests (Ben Sturmfels)

	Unmute videos by default (Ben Sturmfels)

	Properly quote –without-python3 in docs (#5596) (Ben Sturmfels)

	Pin all Python 2 dependencies allowing patch version upgrades [#5595] (Ben Sturmfels)

0.9.0

This release has a number of improvements, but is also a major
“plumbing upgrade” release to MediaGoblin. Notably, we now support
Python 3, which is pretty cool!

Do this to upgrade

	If you haven’t already, switch the git remote URL:
git remote set-url origin https://git.savannah.gnu.org/git/mediagoblin.git

	Update to the latest release. If checked out from git, run:
git fetch && git checkout -q v0.9.0

	Run
./bootstrap.sh && ./configure && make

	Also run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate

Bugfixes/improvements:

	Python 3 is now a first class citizen! We now support both
Python 2.7 and Python 3.4 or later.

	Major updates to internal tooling to pave the way for federation.

	Massive overhaul to the database layout (particularly in
permitting generic relations)

	OAuth updates

	Updating how we handle collections

	Add a “graveyard” system with tombstones for keeping information
about removed objects

	Large overhaul to how “comments” work. In federation, many things
can reply to many things, so we had to loosen the model.

	If your user has some collections available, these will be presented
as a dropdown option while submitting media.

	Begin using Alembic for migrations

	Lots of bugfixes and etc
- Many fixes to typos
- Some fixes to the blog system
- Switch to waitress for development
- And more…!

0.8.1

This release is a security and bugfix release. We recommend you upgrade as
soon as possible.

Do this to upgrade

	If you haven’t already, switch the git remote URL:
git remote set-url origin https://git.savannah.gnu.org/git/mediagoblin.git

	Update to the latest release. If checked out from git, run:
git fetch && git checkout -q v0.8.1

	Run
./bootstrap.sh && ./configure && make

	Also run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate

(Please check intermediate release steps as well if not upgrading from
0.8.0)

Bugfixes/improvements:

Most importantly, there is an important security fix:

Quoting here a portion of the
release blogpost [http://mediagoblin.org/news/mediagoblin-0.8.1-security-release.html]:

We have had a security problem in our OAuth implementation reported to
us privately and have taken steps to address it. The security problem
affects all versions of GNU MediaGoblin since 0.5.0. I have created a patch
for this and released a minor version 0.8.1. It's strongly advised
that everyone upgrade as soon as they can.

In order to exploit the security issue, an attacker must have had
access to a logged in session to your GNU MediaGoblin account. If you
have kept your username and password secret, logging in only over
HTTPS and you've not left yourself logged in on publicly accessible
computers, you should be safe. However it's still advised all users
take the following precautions, listed below.

Users should check their authorized clients. Any client which looks
unfamiliar to you, you should deauthorize. To check this:

1) Log in to the GNU MediaGoblin instance
2) Click the drop down arrow in the upper right
3) Click "Change account settings"
4) At the bottom click the "Deauthorize applications" link

If you are unsure of any of these, click "Deauthorize".

There are other bugfixes, but they are fairly minor.

0.8.0

This release has a number of changes related to the way we recommend
building MediaGoblin; upgrade steps are below, but if you run into
trouble, consider pinging the MediaGoblin list or IRC channel.

Do this to upgrade

	If you haven’t already, switch the git remote URL:
git remote set-url origin https://git.savannah.gnu.org/git/mediagoblin.git

	If you don’t have node.js installed, you’ll need it for handling
MediaGoblin’s static web dependencies. Install this via your
distribution! (In the glorious future MediaGoblin will be simply
packaged for your distribution so you won’t have to worry about
this!)

	Update to the latest release. If checked out from git, run:
git fetch && git checkout -q v0.8.0

	Run
./bootstrap.sh && ./configure && make

	Also run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate

Please note the important steps of 0 and 2, which have not appeared in
prior upgrade guides!

Additionally:

	Are you using audio or video media types? In that case, you’ll need
to update your GStreamer instance to 1.0.

	The Pump API needs some data passed through to the WSGI application,
so if you are using Apache with mod_wsgi you should be sure to make
sure to add “WSGIPassAuthorization On” to your config. (Using the
default MediaGoblin documentation and config, things should work
as-is.)

Bugfixes/improvements:

	Preliminary / experimental support for Python 3!

	Footer forced to the bottom of page

	Massive improvements to Pump API support

	Able to run on multiple existing Pump clients! Including Pumpa
and Dianara!

	much cleaner ./configure && make support; it’s now the default

	Clearer documentation on permissions and installation

	Switched from Transifex, which had become proprietary, to an
instance of Pootle hosted for GNU

	Moved to GStreamer 1.0! This also adds a new thumbnailer which
gives much better results in

	Removed terrible check-JavaScript-dependencies-into-your-application
setup, now using Bower for dependency tracking

	Put some scaffolding in place for Alembic, which will be used for
future migration work

	Automatically create a fresh mediagoblin.ini from
mediagoblin.ini.example

	no more need for mediagoblin_local.ini (though it’s still supported)

	Fix lowercasing of username in auth steps

	Slowly moving towards removing global state (a source of many bugs)

0.7.1

This is a purely bugfix release. Important changes happened since
0.7.0; if running MediaGoblin 0.7.0, an upgrade is highly recommended;
see below. This release is especially useful if you have been running
PostgreSQL and have been receiving seemingly random database transaction
errors.

Do this to upgrade

	Update to the latest release. If checked out from git, run:
git fetch && git checkout -q v0.7.1 && git submodule init && git submodule update

	Make sure to run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate

That’s it, probably! If you run into problems, don’t hesitate to
contact us [http://mediagoblin.org/pages/join.html]
(IRC is often best).

Bugfixes/improvements:

	The MOST IMPORTANT change in this release:
Disabling a couple of non-critical features that were causing
database transaction issues. (These should be back by 0.8.0.)

	Disabled the “checking if the database is up to date at
MediaGoblin startup” feature

	Disabled the garbage collection stuff by default for now
(You can set garbage_collection under the config MediaGoblin
header to something other than 0 to turn it back on for now, but
it’s potentially risky for the moment.)

	Some fixes to the 0.7.0 docs

	Fixed Sandy 70s speedboat navbar by updating git submodule

	Added support for cr2 files in raw_image media type

	Added a description to setup.py

	Collection and CollectionItem objects now have nicer in-python representations

	Fixed Unicode error with raw image mediatype logging

	Fixed #945 “Host metadata does not confirm to spec (/.well-known/meta-data)”

	Add XRD+XML formatting for /.well-known/host-meta

	Add /.well-known/webfinger API to lookup user hrefs

	deleteuser gmg subcommand now fails gracefully

	Removed a false download link from setup.py

0.7.0

Do this to upgrade

	Update to the latest release. If checked out from git, run:
git fetch && git checkout -q v0.7.0 && git submodule init && git submodule update

	Make sure to run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate

(NOTE: earlier versions of the 0.7.0 release instructions left out the
git submodule init step! If you did an upgrade earlier based on
these instructions and your theme looks weirdly aligned, try running
the following:)

git submodule init && git submodule update

That’s it, probably! If you run into problems, don’t hesitate to
contact us [http://mediagoblin.org/pages/join.html]
(IRC is often best).

New features:

	New mobile upload API making use of the
Pump API [https://github.com/e14n/pump.io/blob/master/API.md]
(which will be the foundation for MediaGoblin’s federation)

	New theme: Sandy 70s Speedboat!

	Metadata features! We also now have a JSON-LD context.

	Many improvements for archival institutions, including metadata
support and featuring items on the homepage. With the (new!)
archivalook plugin enabled, featuring media is possible.
Additionally, metadata about the particular media item will show up
in the sidebar.

In the future these plugins may be separated, but for now they have
come together as part of the same plugin.

	There is a new gmg subcommand called batchaddmedia that allows for
uploading many files at once. This is aimed to be useful for
archival institutions and groups where there is an already existing
and large set of available media that needs to be included.

	Speaking of, the call to PostgreSQL in the makefile is fixed.

	We have a new, generic media-page context hook that allows for
adding context depending on the type of media.

	Tired of video thumbnails breaking during processing all the time?
Good news, everyone! Video thumbnail generation should not fail
frequently anymore. (We think…)

	You can now set default permissions for new users in the config.

	bootstrap.sh / gnu configuration stuff still exists, but moves to be
experimental-bootstrap.sh so as to not confuse newcomers. There are
some problems currently with the autoconf stuff that we need to work
out… we still have interest in supporting it, though help is
welcome.

	MediaGoblin now checks whether or not the database is up to date
when starting.

	Switched to Skeleton [http://www.getskeleton.com/] as a system for
graphic design.

	New gmg subcommands for administrators:
- A “deletemedia” command
- A “deleteuser” command

	We now have a blogging media type… it’s very experimental,
however. Use with caution!

	We have switched to exifread as an external library for reading EXIF
data. It’s basically the same thing as before, but packaged
separately from MediaGoblin.

	Many improvements to internationalization. Also (still rudimentary,
but existent!) RTL language support!

	Known issues:

	
	The host-meta is now JSON by default; in the spec it should be XML by
default. We have done this because of compatibility with the pump
API. We are checking with upstream to see if there is a way to
resolve this discrepancy.

0.6.1

This is a short, bugfix release.

Do this to upgrade

	Update to the latest release. If checked out from git, run:
git fetch && git checkout -q v0.6.1

	Make sure to run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate

This release switches the default terms of service to be off by
default and corrects some mistakes in the default terms of service.

Turning the terms of service on is very easy, just set show_tos in
the [mediagoblin] section of your config to true.

0.6.0

Do this to upgrade

	Update to the latest release. If checked out from git, run:
git fetch && git checkout -q v0.6.0

	Make sure to run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate

That’s it, probably! If you run into problems, don’t hesitate to
contact us [http://mediagoblin.org/pages/join.html]
(IRC is often best).

This tool has a lot of new tools for administrators, hence the
nickname “Lore of the Admin”!

New features:

	New tools to control how much users can upload, both as a general
user limit, or per file.

You can set this with the following options in your MediaGoblin
config file: upload_limit and max_file_size. Both are integers
in megabytes.

There is an option to control how much each individual user can
upload too, though an interface for this is not yet exposed. See
the “uploaded” field on the core__users table.

	MediaGoblin now contains an authentication plugin for LDAP! You
can turn on the mediagoblin.plugins.ldap plugin to make use of
this. See the documentation: LDAP plugin

	There’s a new command line upload tool! At long last! See
./bin/gmg addmedia –help for info on how to use this.

	There’s now a terms of service document included in MediaGoblin.
It’s turned on by default, but you can turn it off if you prefer,
just set the configuration option of show_tos in the [mediagoblin]
section of your config to false.

Alternately, you can override the template for the terms of service
document to set up your own.

	We have a lot of new administrative tooling features!

	There’s a built-in privileges/permissions system now.
Administrators are given access to modifying these parameters
from a user administration panel.

	Users can submit reports about other problematic users or media
and administrators are given tools to resolve said reports and
ban/unban users if needed.

	New version of video.js is included with MediaGoblin. Slight
amount of skinning to match the MediaGoblin look, otherwise also
uses the new default skin.

Developer-oriented changes:

	New developer tool for quickly setting up a development environment
in devtools/make_example_database.sh. Requires doing a checkout
of our other tool mg_dev_environments [https://gitorious.org/mediagoblin/mg-dev-environments/]
(probably in the parent Directory) though!

	A “foundations” framework has entered into the codebase.
This is mostly just relevant to coders, but it does mean that it’s
much easier to add database structures that need some entries filled
automatically by default.

	Refactoring to the authentication code and the reprocessing code

0.5.1

v0.5.1 is a bugfix release… the steps are the same as for 0.5.1.

Bugfixes:

	python 2.6 compatibility restored

	Fixed last release’s release notes ;)

0.5.0

NOTE: If using the API is important to you, we’re in a state of
transition towards a new API via the Pump API. As such, though the old
API still probably works, some changes have happened to the way OAuth
works to make it more Pump-compatible. If you’re heavily using
clients using the old API, you may wish to hold off on upgrading for
now. Otherwise, jump in and have fun! :)

Do this to upgrade

	Make sure to run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate
after upgrading.

	Note that a couple of things have changed with mediagoblin.ini. First
we have a new Authentication System. You need to add
[[mediagoblin.plugins.basic_auth]] under the [plugins] section of
your config file. Second, media types are now plugins, so you need to add
each media type under the [plugins] section of your config file.

	We have made a script to transition your mediagoblin_local.ini file for
you. This script can be found at:

http://mediagoblin.org/download/0.5.0_config_converter.py

If you run into problems, don’t hesitate to
contact us [http://mediagoblin.org/pages/join.html]
(IRC is often best).

New features

	As mentioned above, we now have a plugable Authentication system. You can
use any combination of the multiple authentication systems
(basic_auth plugin, Persona, OpenID plugin)
or write your own!

	Media types are now plugins! This means that new media types will
be able to do new, fancy things they couldn’t in the future.

	We now have notification support! This allows you to subscribe to media
comments and to be notified when someone comments on your media.

	New reprocessing framework! You can now reprocess failed uploads, and
send already processed media back to processing to re-transcode or resize
media.

	Comment preview!

	Users now have the ability to change their email associated with their
account.

	New OAuth code as we move closer to federation support.

	Experimental pyconfigure support for GNU-style configure and makefile
deployment.

	Database foundations! You can now pre-populate the database models.

	Way faster unit test run-time via in-memory database.

	All mongokit stuff has been cleaned up.

	Fixes for non-ASCII filenames.

	The option to stay logged in.

	MediaGoblin has been upgraded to use the latest Celery [http://celeryproject.org/]
version.

	You can now add jinja2 extensions to your config file to use in custom
templates.

	Fixed video permission issues.

	MediaGoblin docs are now hosted with multiple versions.

	We removed redundant tooltips from the STL media display.

	We are now using itsdangerous for verification tokens.

0.4.1

This is a bugfix release for 0.4.0. This only implements one major
fix in the newly released document support which prevented the
“conversion via libreoffice” feature.

If you were running 0.4.0 you can upgrade to v0.4.1 via a simple
switch and restarting MediaGoblin/Celery with no other actions.

Otherwise, follow 0.4.0 instructions.

0.4.0

Do this to upgrade

	Make sure to run
./bin/python setup.py develop --upgrade && ./bin/gmg dbupdate
after upgrading.

	See “For Theme authors” if you have a custom theme.

	Note that ./bin/gmg theme assetlink is now just
./bin/gmg assetlink and covers both plugins and assets.
Keep on reading to hear more about new plugin features.

	If you want to take advantage of new plugins that have statically
served assets, you are going to need to add the new “plugin_static”
section to your Nginx config. Basically the following for Nginx:

Plugin static files (usually symlinked in)
location /plugin_static/ {
 alias /srv/mediagoblin.example.org/mediagoblin/user_dev/plugin_static/;
}

Similarly, if you’ve got a modified paste config, you may want to
borrow the app:plugin_static section from the default paste.ini
file.

	We now use itsdangerous for sessions; if you had any references to
beaker in your paste config you can remove them. Again, see the
default paste.ini config

	We also now use git submodules. Please do:
git submodule init && git submodule update
You will need to do this to use the new PDF support.

For theme authors

If you have your own theme or you have any “user modified templates”,
please note the following:

	mediagoblin/bits/ files above-content.html, body-end.html,
body-start.html now are renamed… they have underscores instead of
dashes in the filenames now :)

	There’s a new file: mediagoblin/bits/frontpage_welcome.html.
You can easily customize this to give a welcome page appropriate to
your site.

New features

	PDF media type!

	Improved plugin system. More flexible, better documented, with a
new plugin authoring section of the docs.

	itsdangerous based sessions. No more beaker!

	New, experimental Piwigo-based API. This means you should be able
to use MediaGoblin with something like Shotwell. (Again, a word of
caution: this is very experimental!)

	Human readable timestamps, and the option to display the original
date of an image when available (available as the
“original_date_visible” variable)

	Moved unit testing system from nosetests to py.test so we can better
handle issues with SQLAlchemy exploding with different database
configurations. Long story :)

	You can now disable the ability to post comments.

	Tags now can be up to length 255 characters by default.

0.3.3

Do this to upgrade

	Make sure to run bin/gmg dbupdate after upgrading.

	OpenStreetMap is now a plugin, so if you want to use it, add the
following to your config file:

[plugins]
[[mediagoblin.plugins.geolocation]]

If you have your own theme, you may need to make some adjustments to
it as some theme related things may have changed in this release. If
you run into problems, don’t hesitate to
contact us [http://mediagoblin.org/pages/join.html]
(IRC is often best).

New features

	New dropdown menu for accessing various features.

	Significantly improved URL generation. Now MediaGoblin won’t give
up on making a slug if it looks like there will be a duplicate;
it’ll try extra hard to generate a meaningful one instead.

Similarly, linking to an id no longer can possibly conflict with
linking to a slug; /u/username/m/id:35/ is the kind of reference we
now use to linking to entries with ids. However, old links with
entries that linked to ids should work just fine with our migration.
The only URLs that might break in this release are ones using colons
or equal signs.

	New template hooks for plugin authoring.

	As a demonstration of new template hooks for plugin authoring,
OpenStreetMap support now moved to a plugin!

	Method to add media to collections switched from icon of paperclip
to button with “add to collection” text.

	Bug where videos often failed to produce a proper thumbnail fixed!

	Copying around files in MediaGoblin now much more efficient, doesn’t
waste gobs of memory.

	Video transcoding now optional for videos that meet certain
criteria. By default, MediaGoblin will not transcode WebM videos
that are smaller in resolution than the MediaGoblin defaults, and
MediaGoblin can also be configured to allow Theora files to not be
transcoded as well.

	Per-user license preference option; always want your uploads to be
BY-SA and tired of changing that field? You can now set your
license preference in your user settings.

	Video player now responsive; better for mobile!

	You can now delete your account from the user preferences page if
you so wish.

Other changes

	Plugin writers: Internal restructuring led to mediagoblin.db.sql* be
mediagoblin.db.* starting from 0.3.3

	Dependency list has been reduced not requiring the “webob” package anymore.

	And many small fixes/improvements, too numerous to list!

0.3.2

This will be the last release that is capable of converting from an earlier
MongoDB-based MediaGoblin instance to the newer SQL-based system.

Do this to upgrade

directory of your MediaGoblin install
cd /srv/mediagoblin.example.org

copy source for this release
git fetch
git checkout tags/v0.3.2

perform any needed database updates
bin/gmg dbupdate

restart your servers however you do that, e.g.,
sudo service mediagoblin-paster restart
sudo service mediagoblin-celeryd restart

New features

	3d model support!

You can now upload STL and OBJ files and display them in
MediaGoblin. Requires a recent Blender; for details see:
Deploying MediaGoblin

	trim_whitespace

We bundle the optional plugin trim_whitespace which reduces the size
of the delivered HTML output by reducing redundant whitespace.

See Part 2: Core plugin documentation for plugin documentation

	A new API!

It isn’t well documented yet but we do have an API. There is an
android application in progress [https://gitorious.org/mediagoblin/mediagoblin-android]
which makes use of it, and there are some demo applications between
automgtic [https://github.com/jwandborg/automgtic], an
automatic media uploader for your desktop
and OMGMG [https://github.com/jwandborg/omgmg], an example of
a web application hooking up to the API.

This is a plugin, so you have to enable it in your MediaGoblin
config file by adding a section under [plugins] like:

[plugins]
[[mediagoblin.plugins.api]]

Note that the API works but is not nailed down… the way it is
called may change in future releases.

	OAuth login support

For applications that use OAuth to connect to the API.

This is a plugin, so you have to enable it in your MediaGoblin
config file by adding a section under [plugins] like:

[plugins]
[[mediagoblin.plugins.oauth]]

	Collections

We now have user-curated collections support. These are arbitrary
galleries that are customizable by users. You can add media to
these by clicking on the paperclip icon when logged in and looking
at a media entry.

	OpenStreetMap licensing display improvements

More accurate display of OSM licensing, and less disruptive: you
click to “expand” the display of said licensing.

Geolocation is also now on by default.

	Miscellaneous visual improvements

We’ve made a number of small visual improvements including newer and
nicer looking thumbnails and improved checkbox placement.

0.3.1

Do this to upgrade

	Make sure to run bin/gmg dbuptdate after upgrading.

	If you set up your server config with an older version of
MediaGoblin and the MediaGoblin docs, it’s possible you don’t
have the “theme static files” alias, so double check to make
sure that section is there if you are having problems.

New features

	theming support

MediaGoblin now also includes theming support, which you can
read about in the section Theming MediaGoblin.

	flatpages

MediaGoblin has a flatpages plugin allowing you to add pages that
are aren’t media-related like “About this site…”, “Terms of
service…”, etc.

See Part 2: Core plugin documentation for plugin documentation

0.3.0

This release has one important change. You need to act when
upgrading from a previous version!

This release changes the database system from MongoDB to
SQL(alchemy). If you want to setup a fresh instance, just
follow the instructions in the deployment chapter. If on
the other hand you want to continue to use one instance,
read on.

To convert your data from MongoDB to SQL(alchemy), you need
to follow these steps:

	Make sure your MongoDB is still running and has your
data, it’s needed for the conversion.

	Configure the sql_engine URI in the config to represent
your target database (see: Deploying MediaGoblin)

	You need an empty database.

	Then run the following command:

bin/gmg [-cf mediagoblin_config.ini] convert_mongo_to_sql

	Start your server and investigate.

	That’s it.

Theming MediaGoblin

We try to provide a nice theme for MediaGoblin by default, but of
course, you might want something different! Maybe you want something
more light and colorful, or maybe you want something specifically
tailored to your organization. Have no fear—MediaGoblin has theming
support! This guide should walk you through installing and making
themes.

Installing a theme

Installing the archive

Say you have a theme archive such as goblincities.tar.gz and you
want to install this theme! Don’t worry, it’s fairly painless.

	cd ./user_dev/themes/

	Move the theme archive into this directory

	tar -xzvf <tar-archive>

	Open your configuration file (probably named
mediagoblin.ini) and set the theme name:

[mediagoblin]
...
theme = goblincities

	Link the assets so that they can be served by your web server:

$./bin/gmg assetlink

Note

If you ever change the current theme in your config file, you
should re-run the above command!

(In the near future this should be even easier ;))

Set up your webserver to serve theme assets

If you followed the Nginx setup example in Nginx as a reverse-proxy you
should already have theme asset setup. However, if you set up your
server config with an older version of MediaGoblin and the MediaGoblin
docs, it’s possible you don’t have the “theme static files” alias, so
double check to make sure that section is there if you are having
problems.

If you are simply using this for local development and serving the
whole thing via paste/lazyserver, assuming you don’t have a
paste_local.ini, the asset serving should be done for you.

Configuring where things go

By default, MediaGoblin’s install directory for themes is
./user_dev/themes/ (relative to the MediaGoblin checkout or base
config file.) However, you can change this location easily with the
theme_install_dir setting in the [mediagoblin] section.

For example:

[mediagoblin]
... other parameters go here ...
theme_install_dir = /path/to/themes/

Other variables you may consider setting:

	theme_web_path

	When theme-specific assets are specified, this is where MediaGoblin
will set the URLs. By default this is "/theme_static/" so in
the case that your theme was trying to access its file
"images/shiny_button.png" MediaGoblin would link
to /theme_static/images/shiny_button.png.

	theme_linked_assets_dir

	Your web server needs to serve the theme files out of some directory,
and MediaGoblin will symlink the current theme’s assets here. See
the “Link the assets” step in Installing the archive.

Making a theme

Okay, so a theme layout is pretty simple. Let’s assume we’re making a
theme for an instance about hedgehogs! We’ll call this the
“hedgehogified” theme.

Change to where your theme_install_dir is set to (by default,
./user_dev/themes/ … make those directories or otherwise adjust
if necessary):

hedgehogified/
|- theme.cfg # configuration file for this theme
|- templates/ # override templates
| '- mediagoblin/
| |- base.html # overriding mediagoblin/base.html
| '- root.html # overriding mediagoblin/root.html
'- assets/
| '- images/
| | |- im_a_hedgehog.png # hedgehog-containing image used by theme
| | '- custom_logo.png # your theme's custom logo
| '- css/
| '- hedgehog.css # your site's hedgehog-specific CSS
|- README.txt # Optionally, a readme file (not required)
|- AGPLv3.txt # AGPL license file for your theme. (good practice)
'- CC0_1.0.txt # CC0 1.0 legalcode for the assets [if appropriate!]

The top level directory of your theme should be the symbolic name for
your theme. This is the name that users will use to refer to activate
your theme.

Note

It’s important to note that templates based on MediaGoblin’s code
should be released as AGPLv3 (or later), like MediaGoblin’s code
itself. However, all the rest of your assets are up to you. In this
case, we are waiving our copyright for images and CSS into the public
domain via CC0 (as MediaGoblin does) but do what’s appropriate to you.

The config file

The config file is not presently strictly required, though it is nice to have.
Only a few things need to go in here:

[theme]
name = Hedgehog-ification
description = For hedgehog lovers ONLY
licensing = AGPLv3 or later templates; assets (images/CSS) waived under CC0 1.0

The name and description fields here are to give users an idea of what
your theme is about. For the moment, we don’t have any listing
directories or admin interface, so this probably isn’t useful, but
feel free to set it in anticipation of a more glorious future.

Licensing field is likewise a textual description of the stuff here;
it’s recommended that you preserve the “AGPLv3 or later templates” and
specify whatever is appropriate to your assets.

Templates

Your template directory is where you can put any override and custom
templates for MediaGoblin.

These follow the general MediaGoblin theming layout, which means that
the MediaGoblin core templates are all kept under the ./mediagoblin/
prefix directory.

You can copy files right out of MediaGoblin core and modify them in
this matter if you wish.

To fit with best licensing form, you should either preserve the
MediaGoblin copyright header borrowing from a MediaGoblin template, or
you may include one like the following:

{#
[YOUR THEME], a MediaGoblin theme
Copyright (C) [YEAR] [YOUR NAME]
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#}

Assets

Put any files, such as images, CSS, etc, that are specific to your
theme in here.

You can reference these in your templates like so:

This will tell MediaGoblin to reference this image from the current theme.

Licensing file(s)

You should include AGPLv3.txt with your theme as this is required for
the assets. You can copy this from mediagoblin/licenses/.

In the above example, we also use CC0 to waive our copyrights to
images and CSS, so we also included CC0_1.0.txt

A README.txt file

A README file is not strictly required, but probably a good idea. You
can put whatever in here, but restating the license choice clearly is
probably a good idea.

Simple theming by adding CSS

Many themes won’t require anything other than the ability to override
some of MediaGoblin’s core CSS. Thankfully, doing so is easy if you
combine the above steps!

In your theme, do the following (make sure you make the necessary
directories and cd to your theme’s directory first):

$ cp /path/to/mediagoblin/mediagoblin/templates/mediagoblin/extra_head.html templates/mediagoblin/

Great, now open that file and add something like this at the end:

<link rel="stylesheet" type="text/css"
 href="{{ request.staticdirect('/css/theme.css', 'theme') }}"/>

You can name the CSS file whatever you like. Now make the directory
for assets/css/ and add the file assets/css/theme.css.

You can now put custom CSS files in here and any CSS you add will
override default MediaGoblin CSS.

Packaging it up!

Packaging a theme is really easy. It’s just a matter of making an archive!

Change to the installed themes directory and run the following:

tar -cvfz yourtheme.tar.gz yourtheme

Where “yourtheme” is replaced with your theme name.

That’s it!

Plugins

GNU MediaGoblin supports plugins that allow you to augment MediaGoblin’s
behavior.

This chapter covers discovering, installing, configuring and removing
plugins.

Discovering plugins

MediaGoblin comes with core plugins. Core plugins are located in the
mediagoblin.plugins module of the MediaGoblin code. Because they
come with MediaGoblin, you don’t have to install them, but you do have
to add them to your config file if you’re interested in using them.

You can also write your own plugins and additionally find plugins
elsewhere on the Internet. Once you find a plugin you like, you need
to first install it, then add it to your configuration.

Installing plugins

Core plugins

MediaGoblin core plugins don’t need to be installed because they come
with MediaGoblin. Further, when you upgrade MediaGoblin, you will also
get updates to the core plugins.

Other plugins

If the plugin is available on the Python Package Index [http://pypi.python.org/pypi], then you can install the plugin with pip:

pip install <plugin-name>

For example, if we wanted to install the plugin named
“mediagoblin-licenses” (which allows you to customize the licenses you
offer for your media), we would do:

pip install mediagoblin-licenses

Note

If you’re using a virtual environment, make sure to activate the
virtual environment before installing with pip. Otherwise the plugin
may get installed in a different environment than the one MediaGoblin
is installed in.

Once you’ve installed the plugin software, you need to tell
MediaGoblin that this is a plugin you want MediaGoblin to use. To do
that, you edit the mediagoblin.ini file and add the plugin as a
subsection of the plugin section.

For example, say the “mediagoblin-licenses” plugin has the Python
package path mediagoblin_licenses, then you would add mediagoblin_licenses to
the plugins section as a subsection:

[plugins]

[[mediagoblin_licenses]]
license_01=abbrev1, name1, http://url1
license_02=abbrev2, name1, http://url2

Configuring plugins

Configuration for a plugin goes in the subsection for that plugin. Core
plugins are documented in the administration guide. Other plugins
should come with documentation that tells you how to configure them.

Example 1: Core MediaGoblin plugin

If you wanted to use the core MediaGoblin flatpages plugin, the module
for that is mediagoblin.plugins.flatpagesfile and you would add
that to your .ini file like this:

[plugins]

[[mediagoblin.plugins.flatpagesfile]]
configuration for flatpagesfile plugin here!
about-view = '/about', about.html
terms-view = '/terms', terms.html

(Want to know more about the flatpagesfile plugin? See
flatpagesfile plugin)

Example 2: Plugin that is not a core MediaGoblin plugin

If you installed a hypothetical restrictfive plugin which is in the
module restrictfive, your .ini file might look like this (with
comments making the bits clearer):

[plugins]

[[restrictfive]]
configuration for restrictfive here!

Check the plugin’s documentation for what configuration options are
available.

Once you’ve set up your plugin, you should be sure to update the
database to accommodate the new plugins:

./bin/gmg dbupdate

Deactivating plugins

You should be aware that once you enable a plugin, deactivating it
might be a bit tricky, for migrations reasons. In the future we may
produce better tooling to accommodate this. In short, you will need to
do a bit of database surgery by:

	Removing all tables and indexes installed by the plugin

	Removing the plugin’s migration head id from the alembic_version
table. (You might be able to determine which to remove via
examining the output of ./bin/gmg alembic heads)

Note that this is a VERY TRICKY process, and you should be sure to make
a backup first. You’ve been warned!

Removing plugin packages

To remove an external plugin’s package, use pip uninstall. For example:

pip uninstall mediagoblin-licenses

Note

If you’re using a virtual environment, make sure to activate the
virtual environment before uninstalling with pip. Otherwise the
plugin may get installed in a different environment.

Upgrading plugins

Core plugins

Core plugins get upgraded automatically when you upgrade MediaGoblin
because they come with MediaGoblin.

Other plugins

For plugins that you install with pip, you can upgrade them with pip:

pip install -U <plugin-name>

The -U tells pip to upgrade the package.

Troubleshooting plugins

Sometimes plugins just don’t work right. When you’re having problems
with plugins, think about the following:

	Check the log files.

Some plugins will log errors to the log files and you can use that
to diagnose the problem.

	Try running MediaGoblin without that plugin.

It’s easy to disable a plugin from MediaGoblin. Add a - to the
name in your config file.

For example, change:

[[mediagoblin.plugins.flatpagesfile]]

to:

[[-mediagoblin.plugins.flatpagesfile]]

That’ll prevent the mediagoblin.plugins.flatpagesfile plugin from
loading.

	If it’s a core plugin that comes with MediaGoblin, ask us for help!

If it’s a plugin you got from somewhere else, ask them for help!

Command-line and batch uploading

If you’re a site administrator and have access to the server then you
can use the ‘addmedia’ task. If you’re just a user and want to upload
media by the command line you can. This can be done with the pump.io
API. There is p [https://github.com/xray7224/p/], which will allow you
to easily upload media from the command line, follow p’s docs to do that.

To use the addmedia command:

./bin/gmg addmedia username your_media.jpg

This will submit the file “your_media.jpg” to be a media entry
associated with the user “username”.

You can get help on all the available options by running:

./bin/gmg addmedia --help

Here’s a longer example that makes use of more options:

./bin/gmg addmedia aveyah awesome_spaceship.png \
 --title "My awesome spaceship" \
 --description "Flying my awesome spaceship, since I'm an awesome pilot" \
 --collection-slug i-m-an-awesome-pilot \
 --license "http://creativecommons.org/licenses/by-sa/3.0/" \
 --tags "spaceships, pilots, awesome" \
 --slug "awesome-spaceship"

You can also pass in the –celery option if you would prefer that
your media be passed over to celery to be processed rather than be
processed immediately.

Batch uploading

There’s another way to submit media, and it can be much more powerful, although
it is a bit more complex.

./bin/gmg batchaddmedia admin /path/to/your/metadata.csv

This is an example of what a script may look like. The important part here is
that you have to create the ‘metadata.csv’ file.:

location,dc:title,dc:creator,dc:type
"http://www.example.net/path/to/nap.png","Goblin taking a nap",,"Image"
"http://www.example.net/path/to/snore.ogg","Goblin Snoring","Me","Audio"

The above is an example of a very simple metadata.csv file. The batchaddmedia
script would read this and attempt to upload only two pieces of media, and would
be able to automatically name them appropriately.

The CSV file

The location column

The location column is the one column that is absolutely necessary for
uploading your media. This gives a path to each piece of media you upload. This
can either a path to a local file or a direct link to remote media (with the
link in HTTP format). As you can see in the example above the (fake) media was
stored remotely on “www.example.net”.

Other internal nodes

There are other columns which can be used by the script to provide information.
These are not stored as part of the media’s metadata. You can use these columns to
provide default information for your media entry, but as you’ll see below, it’s
just as easy to provide this information through the correct metadata columns.

	id is used to identify the media entry to the user in case of an error in the batchaddmedia script.

	license is used to set a license for your piece a media for MediaGoblin’s use. This must be a URI.

	title will set the title displayed to MediaGoblin users.

	description will set a description of your media.

	collection-slug will add the media to a collection, if a collection with the given slug exists.

Metadata columns

Other columns can be used to provide detailed metadata about each media entry.
Our metadata system accepts any information provided for in the
RDFa Core Initial Context [http://www.w3.org/2011/rdfa-context/rdfa-1.1], and the batchupload script recognizes all of the
resources provided within it.

The uploader may include the metadata for each piece of media, or
leave them blank if they want to. A few columns from Dublin Core [http://wiki.dublincore.org/index.php/User_Guide] are
notable because the batchaddmedia script also uses them to set the default
information of uploaded media entries.

	dc:title sets a title for your media entry.

	dc:description sets a description of your media entry.

If both a metadata column and an internal node for the title are provided, MediaGoblin
will use the internal node as the media entry’s display name. This makes it so
that if you want to display a piece of media with a different title
than the one provided in its metadata, you can just provide different data for
the ‘dc:title’ and ‘title’ columns. The same is true of the ‘description’ and
‘dc:description’.

basic_auth plugin

The basic_auth plugin is enabled by default in mediagoblin.ini. This plugin
provides basic username and password authentication for GNU MediaGoblin.

This plugin can be enabled alongside OpenID plugin.

Set up the basic_auth plugin

	Add the following to your MediaGoblin .ini file in the [plugins] section:

[[mediagoblin.plugins.basic_auth]]

	Run:

gmg assetlink

in order to link basic_auth’s static assets

flatpagesfile plugin

This is the flatpages file plugin. It allows you to add pages to your
MediaGoblin instance which are not generated from user content. For
example, this is useful for these pages:

	About this site

	Terms of service

	Privacy policy

	How to get an account here

	…

How to configure

Add the following to your MediaGoblin .ini file in the [plugins]
section:

[[mediagoblin.plugins.flatpagesfile]]

This tells MediaGoblin to load the flatpagesfile plugin. This is the
subsection that you’ll do all flatpagesfile plugin configuration in.

How to add pages

To add a new page to your site, you need to do two things:

	add a route to the MediaGoblin .ini file in the flatpagesfile
subsection

	write a template that will get served when that route is requested

Routes

First, let’s talk about the route.

A route is a key/value in your configuration file.

The key for the route is the route name You can use this with url()
in templates to have MediaGoblin automatically build the urls for
you. It’s very handy.

It should be “unique” and it should be alphanumeric characters and
hyphens. I wouldn’t put spaces in there.

Examples: flatpages-about, about-view, contact-view, …

The value has two parts separated by commas:

	route path: This is the URL that this route matches.

Examples: /about, /contact, /pages/about, …

You can do anything with this that you can do with the routepath
parameter of routes.Route. For more details, see the routes
documentation [http://routes.readthedocs.org/en/latest/].

Example: /siteadmin/{adminname:\w+}

Note

If you’re doing something fancy, enclose the route in single
quotes.

For example: '/siteadmin/{adminname:\w+}'

	template: The template to use for this URL. The template is in
the flatpagesfile template directory, so you just need to specify
the file name.

Like with other templates, if it’s an HTML file, it’s good to use
the .html extensions.

Examples: index.html, about.html, contact.html, …

Here’s an example configuration that adds two flat pages: one for an
“About this site” page and one for a “Terms of service” page:

[[mediagoblin.plugins.flatpagesfile]]
about-view = '/about', about.html
terms-view = '/terms', terms.html

Note

The order in which you define the routes in the config file is the
order in which they’re checked for incoming requests.

Templates

To add pages, you must edit template files on the file system in your
local_templates directory.

The directory structure looks kind of like this:

local_templates
|- flatpagesfile
 |- flatpage1.html
 |- flatpage2.html
 |- ...

The .html file contains the content of your page. It’s just a
template like all the other templates you have.

Here’s an example that extends the flatpagesfile/base.html
template:

{% extends "flatpagesfile/base.html" %}
{% block mediagoblin_content %}
<h1>About this site</h1>
<p>
 This site is a MediaGoblin instance set up to host media for
 me, my family and my friends.
</p>
{% endblock %}

Note

If you have a bunch of flatpages that kind of look like one
another, take advantage of Jinja2 template extending and create a
base template that the others extend.

Recipes

URL variables

You can handle URLs like /about/{name} and access the name that’s
passed in in the template.

Sample route:

about-page = '/about/{name}', about.html

Sample template:

{% extends "flatpagesfile/base.html" %}
{% block mediagoblin_content %}

<h1>About page for {{ request.matchdict['name'] }}</h1>

{% endblock %}

See the the routes documentation [http://routes.readthedocs.org/en/latest/] for syntax details for
the route. Values will end up in the request.matchdict dict.

LDAP plugin

Warning

This plugin is not compatible with the other authentication plugins.

This plugin allow your GNU MediaGoblin instance to authenticate against an
LDAP server.

Set up the LDAP plugin

	Install the python3-ldap package.

	Add the following to your MediaGoblin .ini file in the [plugins] section:

[[mediagoblin.plugins.ldap]]

Configuring the LDAP plugin

This plugin allows you to use multiple LDAP servers for authentication.

In order to configure a server, add the following to you MediaGoblin .ini file
under the LDAP plugin:

[[mediagoblin.plugins.ldap]]
[[[server1]]]
LDAP_SERVER_URI = 'ldap://ldap.testathon.net:389'
LDAP_USER_DN_TEMPLATE = 'cn={username},ou=users,dc=testathon,dc=net'
[[[server2]]]
...

Make any necessary changes to the above to work with your sever. Make sure
{username} is where the username should be in LDAP_USER_DN_TEMPLATE.

If you would like to fetch the users email from the LDAP server upon account
registration, add LDAP_SEARCH_BASE = 'ou=users,dc=testathon,dc=net' and
EMAIL_SEARCH_FIELD = 'mail' under you server configuration in your
MediaGoblin .ini file.

Warning

By default, this plugin provides no encryption when communicating with the
LDAP servers. If you would like to use an SSL connection, change
LDAP_SERVER_URI to use ldaps:// and whichever port you use. Default LDAP
port for SSL connections is 636. If you would like to use a TLS connection,
add LDAP_START_TLS = 'true' under your server configuration in your
MediaGoblin .ini file.

OpenID plugin

The OpenID plugin allows user to login to your GNU MediaGoblin instance using
their OpenID URL.

This plugin can be enabled alongside basic_auth plugin.

Note

When basic_auth plugin is enabled alongside this OpenID plugin, and
a user creates an account using their OpenID. If they would like to add a
password to their account, they can use the forgot password feature to do
so.

Set up the OpenID plugin

	Install the python3-openid package.

	Add the following to your MediaGoblin .ini file in the [plugins] section:

[[mediagoblin.plugins.openid]]

	Run:

gmg dbupdate

in order to create and apply migrations to any database tables that the
plugin requires.

raven plugin

Warning: this plugin is somewhat experimental.

Set up the raven plugin

	Install the raven Python package with bin/python -m pip install raven.

	Add the following to your MediaGoblin .ini file in the [plugins] section:

[[mediagoblin.plugins.raven]]
sentry_dsn = <YOUR SENTRY DSN>
Logging is very high-volume, set to 0 if you want to turn off logging
setup_logging = 1

sampleplugin

This is a sample plugin. It does nothing interesting other than show
one way to structure a MediaGoblin plugin.

The code for this plugin is in mediagoblin/plugins/sampleplugin/.

Subtitles plugin

This plugin enables text captioning of videos (though not yet audio). Once the
plugin is enabled, you’ll see a link to upload subtitles in WebVTT format [https://en.wikipedia.org/wiki/WebVTT] as
supported by the Video.js Text Tracks [https://docs.videojs.com/docs/guides/text-tracks.html] feature.

Enabling the subtitles plugin

	Add the following to your MediaGoblin .ini file in the [plugins] section:

[[mediagoblin.plugins.subtitles]]

	Run:

$./bin/gmg dbupdate

	Restart your MediaGoblin process.

Trim whitespace plugin

MediaGoblin templates are written with 80 char limit for better
readability. However that means that the HTML output is very verbose
containing lots of whitespace. This plugin inserts a middleware that
filters out whitespace from the returned HTML in the Response()
objects.

Simply enable this plugin by putting it somewhere where Python can reach
it and put it’s path into the [plugins] section of your
mediagoblin.ini or mediagoblin_local.ini like for example this:

[plugins]
[[mediagoblin.plugins.trim_whitespace]]

There is no further configuration required. If this plugin is enabled,
all text/html documents should not have lots of whitespace in between
elements, although it does a very naive filtering right now (just keep
the first whitespace and delete all subsequent ones).

Nonetheless, it is a useful plugin that might serve as inspiration for
other plugin writers.

It was originally conceived by Sebastian Spaeth. It is licensed under
the GNU AGPL v3 (or any later version) license.

Foreword

About the Plugin Writer’s Guide

This guide covers writing plugins for GNU MediaGoblin. It’s very much
a work in progress partially because we just started writing it and
partially because the plugin API is currently in flux.

Improving the Plugin Writer’s Guide

There are a few ways—please pick whichever method is convenient for
you!

	Write up a bug report in the bug tracker

	Tell someone on IRC #mediagoblin on Freenode.

	Write an email to the devel mailing list.

Information about the bugtracker, IRC and the mailing list is all on
the join page [http://mediagoblin.org/join/].

Patches are the most helpful, but even feedback on what you think
could be improved and how to improve it is also helpful.

Quick Start

This is a quick start. It’s not comprehensive, but it walks through
writing a basic plugin called “sampleplugin” which logs “I’ve been
started!” when setup_plugin() has been called.

Step 1: Files and directories

GNU MediaGoblin plugins are Python projects at heart. As such, you should
use a standard Python project directory tree:

sampleplugin/
 |- README
 |- LICENSE
 |- setup.py
 |- sampleplugin/
 |- __init__.py

The outer sampleplugin directory holds all the project files.

The README should cover what your plugin does, how to install it,
how to configure it, and all the sorts of things a README should
cover.

The LICENSE should have the license under which you’re
distributing your plugin.

The inner sampleplugin directory is the Python package that holds
your plugin’s code.

The __init__.py denotes that this is a Python package. It also
holds the plugin code and the hooks dict that specifies which
hooks the sampleplugin uses.

Step 2: README

Here’s a rough README. Generally, you want more information
because this is the file that most people open when they want to learn
more about your project.

README
======

This is a sample plugin. It logs a line when ``setup__plugin()`` is
run.

Step 3: LICENSE

GNU MediaGoblin plugins must be licensed under the AGPLv3 or later. So
the LICENSE file should be the AGPLv3 text which you can find at
http://www.gnu.org/licenses/agpl-3.0.html

Step 4: setup.py

This file is used for packaging and distributing your plugin.

We’ll use a basic one:

from setuptools import setup, find_packages

setup(
 name='sampleplugin',
 version='1.0',
 packages=find_packages(),
 include_package_data=True,
 install_requires=[],
 license='AGPLv3',
)

See http://docs.python.org/distutils/index.html#distutils-index
for more details.

Step 5: the code

The code for __init__.py looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 import logging
 from mediagoblin.tools.pluginapi import PluginManager, get_config

 # This creates a logger that you can use to log information to
 # the console or a log file.
 _log = logging.getLogger(__name__)

 # This is the function that gets called when the setup
 # hook fires.
 def setup_plugin():
 _log.info("I've been started!")
 config = get_config('sampleplugin')
 if config:
 _log.info('%r' % config)
 else:
 _log.info('There is no configuration set.')

 # This is a dict that specifies which hooks this plugin uses.
 # This one only uses one hook: setup.
 hooks = {
 'setup': setup_plugin
 }

Line 12 defines the setup_plugin function.

Line 23 defines hooks. When MediaGoblin loads this file, it sees
hooks and registers all the callables with their respective hooks.

Step 6: Installation and configuration

To install the plugin for development, you need to make sure it’s
available to the Python interpreter that’s running MediaGoblin.

There are a couple of ways to do this, but we’re going to pick the
easy one.

Use python from your MediaGoblin virtual environment and do:

python setup.py develop

Any changes you make to your plugin will be available in your
MediaGoblin virtual environment.

Then adjust your mediagoblin.ini file to load the plugin:

[plugins]

[[sampleplugin]]

Step 7: That’s it!

When you launch MediaGoblin, it’ll load the plugin and you’ll see
evidence of that in the log file.

That’s it for the quick start!

Where to go from here

See the documentation on the Plugin API for code
samples and other things you can use when building your plugin. If
your plugin needs its own database models, see
Database models for plugins.

See Hitchhiker’s Guide to Packaging [http://guide.python-distribute.org/] for more information on
packaging your plugin.

Database models for plugins

Accessing Existing Data

If your plugin wants to access existing data, this is quite
straight forward. Just import the appropriate models and use
the full power of SQLAlchemy. Take a look at the (upcoming)
database section in the Developer’s Chapter.

Creating new Tables

If your plugin needs some new space to store data, you
should create a new table. Please do not modify core
tables. Not doing so might seem inefficient and possibly
is. It will help keep things sane and easier to upgrade
versions later.

So if you create a new plugin and need new tables, create a
file named models.py in your plugin directory. You
might take a look at the core’s db.models for some ideas.
Here’s a simple one:

from mediagoblin.db.base import Base
from sqlalchemy import Column, Integer, Unicode, ForeignKey

class MediaSecurity(Base):
 __tablename__ = "yourplugin__media_security"

 # The primary key *and* reference to the main media_entry
 media_entry = Column(Integer, ForeignKey('core__media_entries.id'),
 primary_key=True)
 get_media_entry = relationship("MediaEntry",
 backref=backref("security_rating", cascade="all, delete-orphan"))

 rating = Column(Unicode)

MODELS = [MediaSecurity]

Next, you need to make an initial migration. MediaGoblin uses
Alembic’s branching model [http://alembic.readthedocs.org/en/latest/branches.html]
to handle plugins adding their own content. As such, when you are
adding a new plugin, you need to add an initial migration adding
the existing models, and migrate from there.

You’ll need to make a migrations subdirectory for migrations and put
your migrations there. If you want to look at some example
migrations, look at mediagoblin/media_types/image/migrations/,
especially the “initial” migration. (Plugin authors with plugins that
existed prior to the alembic switchover: you might notice how it
checks for the table and skips the migration if it already exists.
Plugin authors writing brand new plugins, post-Alembic migration
switchover, do not need to do this.)

Unfortunately, these migrations are a bit tedious to write.
Fortunately, Alembic can do much of the work for us! After adding the
models.py file, run this command (switching out YOUR_PLUGIN_NAME of
course):

./bin/gmg alembic --with-plugins revision \
 --splice --autogenerate \
 --branch-label YOUR_PLUGIN_NAME_plugin \
 -m "YOUR_PLUGIN_NAME plugin initial migration"

(Note that –with-plugins must come before any alembic subcommand…
this is a quirk related to the way we handle alembic command dispatching
with the gmg subcommand!)

This will dump your migration into “the wrong place” (it’ll dump it
into the MediaGoblin core migrations directory), so you should move it
to your plugin’s migrations directory. Open the file and make adjustments
accordingly!

Some notes:

	Make sure all your __tablename__ start with your
plugin’s name so the tables of various plugins can’t
conflict in the database. (Conflicts in python naming are
much easier to fix later).

	Try to get your database design as good as possible in
the first attempt. Changing the database design later,
when people already have data using the old design, is
possible (see next chapter), but it’s not easy.

Changing the Database Schema Later

If your plugin is in use and instances use it to store some data,
changing the database design is tricky and must be done with care,
but is not impossible.

Luckily, Alembic can once again help with autogenerating what is
probably very close to the migration you want. First you will need to
find out what the revision id of your plugin’s most recent migrations
is. There are two ways to do this: look in your plugin’s migrations/
directory and figure it out with the hope that it’s “obvious” in some
way. The second path: let Alembic give that info for you.

Assuming you’ve already done the latest dbupdate with your plugin
enabled, do the following:

./bin/gmg alembic –with-plugins heads

You should see the latest migration id for your plugin’s label.

Make changes to your
plugin’s models.py and then run:

./bin/gmg alembic --with-plugins revision \
 --head REVISION_HERE \
 --autogenerate \
 -m "YOUR_PLUGIN_NAME: Change explanation here."

Once again, this will dump the migration into the wrong place, so move
to your plugin’s migrations directory. Open the file, adjust
accordingly, and read carefully! Now you should also test your
migration with some real data. Be sure to test it both on SQLite
AND on PostgreSQL!

One last very critical note: you must never, never modify core
tables with your plugin. To do that is to put you and all your users
in a dangerous situation. Add data to the database by adding new tables
under the control of your plugin, but never ever modify anyone else’s!

Whew, you made it! Get yourself a cookie to celebrate!

Plugin API

This documents the general plugin API.

Please note, at this point OUR PLUGIN HOOKS MAY AND WILL CHANGE.
Authors are encouraged to develop plugins and work with the
MediaGoblin community to keep them up to date, but this API will be a
moving target for a few releases.

Please check the Release Notes for updates!

How are hooks added? Where do I find them?

Much of this document talks about hooks, both as in terms of regular
hooks and template hooks. But where do they come from, and how can
you find a list of them?

For the moment, the best way to find available hooks is to check the
source code itself. (Yes, we should start a more official hook
listing with descriptions soon.) But many hooks you may need do not
exist yet: what to do then?

The plan at present is that we are adding hooks as people need them,
with community discussion. If you find that you need a hook and
MediaGoblin at present doesn’t provide it at present, please
talk to us [http://mediagoblin.org/pages/join.html]! We’ll
evaluate what to do from there.

pluginapi Module

This module implements the plugin api bits.

Two things about things in this module:

	they should be excessively well documented because we should pull
from this file for the docs

	they should be well tested

How do plugins work?

Plugins are structured like any Python project. You create a Python package.
In that package, you define a high-level __init__.py module that has a
hooks dict that maps hooks to callables that implement those hooks.

Additionally, you want a LICENSE file that specifies the license and a
setup.py that specifies the metadata for packaging your plugin. A rough
file structure could look like this:

myplugin/
 |- setup.py # plugin project packaging metadata
 |- README # holds plugin project information
 |- LICENSE # holds license information
 |- myplugin/ # plugin package directory
 |- __init__.py # has hooks dict and code

Lifecycle

	All the modules listed as subsections of the plugins section in
the config file are imported. MediaGoblin registers any hooks in
the hooks dict of those modules.

	After all plugin modules are imported, the setup hook is called
allowing plugins to do any set up they need to do.

	
mediagoblin.tools.pluginapi.get_config(key)

	Retrieves the configuration for a specified plugin by key

Example:

>>> get_config('mediagoblin.plugins.sampleplugin')
{'foo': 'bar'}
>>> get_config('myplugin')
{}
>>> get_config('flatpages')
{'directory': '/srv/mediagoblin/pages', 'nesting': 1}}

	
mediagoblin.tools.pluginapi.register_routes(routes)

	Registers one or more routes

If your plugin handles requests, then you need to call this with
the routes your plugin handles.

A “route” is a routes.Route object. See the routes.Route
documentation [http://routes.readthedocs.org/en/latest/modules/route.html] for
more details.

Example passing in a single route:

>>> register_routes(('about-view', '/about',
... 'mediagoblin.views:about_view_handler'))

Example passing in a list of routes:

>>> register_routes([
... ('contact-view', '/contact', 'mediagoblin.views:contact_handler'),
... ('about-view', '/about', 'mediagoblin.views:about_handler')
...])

Note

Be careful when designing your route urls. If they clash with
core urls, then it could result in DISASTER!

	
mediagoblin.tools.pluginapi.register_template_path(path)

	Registers a path for template loading

If your plugin has templates, then you need to call this with
the absolute path of the root of templates directory.

Example:

>>> my_plugin_dir = os.path.dirname(__file__)
>>> template_dir = os.path.join(my_plugin_dir, 'templates')
>>> register_template_path(template_dir)

Note

You can only do this in setup_plugins(). Doing this after
that will have no effect on template loading.

	
mediagoblin.tools.pluginapi.register_template_hooks(template_hooks)

	Register a dict of template hooks.

Takes template_hooks as an argument, which is a dictionary of
template hook names/keys to the templates they should provide.
(The value can either be a single template path or an iterable
of paths.)

Example:

{"media_sidebar": "/plugin/sidemess/mess_up_the_side.html",
 "media_descriptionbox": ["/plugin/sidemess/even_more_mess.html",
 "/plugin/sidemess/so_much_mess.html"]}

	
mediagoblin.tools.pluginapi.get_hook_templates(hook_name)

	Get a list of hook templates for this hook_name.

Note: for the most part, you access this via a template tag, not
this method directly, like so:

{% template_hook("media_sidebar") %}

… which will include all templates for you, partly using this
method.

However, this method is exposed to templates, and if you wish, you
can iterate over templates in a template hook manually like so:

{% for template_path in get_hook_templates("media_sidebar") %}
 <div class="extra_structure">
 {% include template_path %}
 </div>
{% endfor %}

	Returns:

	A list of strings representing template paths.

	
mediagoblin.tools.pluginapi.hook_handle(hook_name, *args, **kwargs)

	Run through hooks attempting to find one that handle this hook.

All callables called with the same arguments until one handles
things and returns a non-None value.

(If you are writing a handler and you don’t have a particularly
useful value to return even though you’ve handled this, returning
True is a good solution.)

	Note that there is a special keyword argument:

	if “default_handler” is passed in as a keyword argument, this will
be used if no handler is found.

	Some examples of using this:

	
	You need an interface implemented, but only one fit for it

	You need to do something, but only one thing needs to do it.

	
mediagoblin.tools.pluginapi.hook_runall(hook_name, *args, **kwargs)

	Run through all callable hooks and pass in arguments.

All non-None results are accrued in a list and returned from this.
(Other “false-like” values like False and friends are still
accrued, however.)

	Some examples of using this:

	
	You have an interface call where actually multiple things can
and should implement it

	You need to get a list of things from various plugins that
handle them and do something with them

	You need to do something, and actually multiple plugins need
to do it separately

	
mediagoblin.tools.pluginapi.hook_transform(hook_name, arg)

	Run through a bunch of hook callables and transform some input.

Note that unlike the other hook tools, this one only takes ONE
argument. This argument is passed to each function, which in turn
returns something that becomes the input of the next callable.

	Some examples of using this:

	
	You have an object, say a form, but you want plugins to each be
able to modify it.

Configuration

Your plugin may define its own configuration defaults.

Simply add to the directory of your plugin a config_spec.ini file. An
example might look like:

[plugin_spec]
some_string = string(default="blork")
some_int = integer(default=50)

This means that when people enable your plugin in their config you’ll
be able to provide defaults as well as type validation.

You can access this via the app_config variables in mg_globals, or you
can use a shortcut to get your plugin’s config section:

>>> from mediagoblin.tools import pluginapi
Replace with the path to your plugin.
(If an external package, it won't be part of mediagoblin.plugins)
>>> floobie_config = pluginapi.get_config('mediagoblin.plugins.floobifier')
>>> floobie_dir = floobie_config['floobie_dir']
This is the same as the above
>>> from mediagoblin import mg_globals
>>> config = mg_globals.global_config['plugins']['mediagoblin.plugins.floobifier']
>>> floobie_dir = floobie_config['floobie_dir']

A tip: you have access to the %(here)s variable in your config,
which is the directory that the user’s MediaGoblin config is running
out of. So for example, your plugin may need a “floobie” directory to
store floobs in. You could give them a reasonable default that makes
use of the default user_dev location, but allow users to override
it, like so:

[plugin_spec]
floobie_dir = string(default="%(here)s/user_dev/floobs/")

Note, this is relative to the user’s MediaGoblin config directory,
not your plugin directory!

Context Hooks

View specific hooks

You can hook up to almost any template called by any specific view
fairly easily. As long as the view directly or indirectly uses the
method render_to_response you can access the context via a hook
that has a key in the format of the tuple:

(view_symbolic_name, view_template_path)

Where the “view symbolic name” is the same parameter used in
request.urlgen() to look up the view. So say we’re wanting to add
something to the context of the user’s homepage. We look in
mediagoblin/user_pages/routing.py and see:

add_route('mediagoblin.user_pages.user_home',
 '/u/<string:user>/',
 'mediagoblin.user_pages.views:user_home')

Aha! That means that the name is mediagoblin.user_pages.user_home.
Okay, so then we look at the view at the
mediagoblin.user_pages.user_home method:

@uses_pagination
def user_home(request, page):
 # [...] whole bunch of stuff here
 return render_to_response(
 request,
 'mediagoblin/user_pages/user.html',
 {'user': user,
 'user_gallery_url': user_gallery_url,
 'media_entries': media_entries,
 'pagination': pagination})

Nice! So the template appears to be
mediagoblin/user_pages/user.html. Cool, that means that the key
is:

("mediagoblin.user_pages.user_home",
 "mediagoblin/user_pages/user.html")

The context hook uses hook_transform() so that means that if we’re
hooking into it, our hook will both accept one argument, context,
and should return that modified object, like so:

def add_to_user_home_context(context):
 context['foo'] = 'bar'
 return context

hooks = {
 ("mediagoblin.user_pages.user_home",
 "mediagoblin/user_pages/user.html"): add_to_user_home_context}

Global context hooks

If you need to add something to the context of every view, it is not
hard; there are two hooks hook that also uses hook_transform (like the
above) but make available what you are providing to every view.

Note that there is a slight, but critical, difference between the two.

The most general one is the 'template_global_context' hook. This
one is run only once, and is read into the global context… all views
will get access to what are in this dict.

The slightly more expensive but more powerful one is
'template_context_prerender'. This one is not added to the global
context… it is added to the actual context of each individual
template render right before it is run! Because of this you also can
do some powerful and crazy things, such as checking the request object
or other parts of the context before passing them on.

Adding static resources

It’s possible to add static resources for your plugin. Say your
plugin needs some special JavaScript and images… how to provide
them? Then how to access them? MediaGoblin has a way!

Attaching to the hook

First, you need to register your plugin’s resources with the hook.
This is pretty easy actually: you just need to provide a function that
passes back a PluginStatic object.

	
class mediagoblin.tools.staticdirect.PluginStatic(name, file_path)

	Pass this into the 'static_setup' hook to register your
plugin’s static directory.

This has two mandatory attributes that you must pass in on class
init:

	name: this name will be both used for lookup in “urlgen” for
your plugin’s static resources and for the subdirectory that
it’ll be “mounted” to for serving via your web browser. It
MUST be unique. If writing a plugin bundled with MediaGoblin
please use the pattern ‘coreplugin__foo’ where ‘foo’ is your
plugin name. All external plugins should use their modulename,
so if your plugin is ‘mg_bettertags’ you should also call this
name ‘mg_bettertags’.

	file_path: the directory your plugin’s static resources are
located in. It’s recommended that you use
pkg_resources.resource_filename() for this.

An example of using this:

from pkg_resources import resource_filename
from mediagoblin.tools.staticdirect import PluginStatic

hooks = {
 'static_setup': lambda: PluginStatic(
 'mg_bettertags',
 resource_filename('mg_bettertags', 'static'))
}

Running plugin assetlink

In order for your plugin assets to be properly served by MediaGoblin,
your plugin’s asset directory needs to be symlinked into the directory
that plugin assets are served from. To set this up, run:

./bin/gmg assetlink

Using staticdirect

Once you have this, you will want to be able to of course link to your
assets! MediaGoblin has a “staticdirect” tool; you want to use this
like so in your templates:

staticdirect("css/monkeys.css", "mystaticname")

Replace “mystaticname” with the name you passed to PluginStatic. The
staticdirect method is, for convenience, attached to the request
object, so you can access this in your templates like:

<img alt="A funny bunny"
 src="{{ request.staticdirect('images/funnybunny.png', 'mystaticname') }}" />

Additional hook tips

This section aims to explain some tips in regards to adding hooks to
the MediaGoblin repository.

WTForms hooks

We haven’t totally settled on a way to transform wtforms form objects,
but here’s one way. In your view:

from mediagoblin.foo.forms import SomeForm

def some_view(request)
 form_class = hook_transform('some_form_transform', SomeForm)
 form = form_class(request.form)

Then to hook into this form, do something in your plugin like:

import wtforms

class SomeFormAdditions(wtforms.Form):
 new_datefield = wtforms.DateField()

def transform_some_form(orig_form):
 class ModifiedForm(orig_form, SomeFormAdditions)
 return ModifiedForm

hooks = {
 'some_form_transform': transform_some_form}

Interfaces

If you want to add a pseudo-interface, it’s not difficult to do so.
Just write the interface like so:

class FrobInterface(object):
 """
 Interface for Frobbing.

 Classes implementing this interface should provide defrob and frob.
 They may also implement double_frob, but it is not required; if
 not provided, we will use a general technique.
 """

 def defrob(self, frobbed_obj):
 """
 Take a frobbed_obj and defrob it. Returns the defrobbed object.
 """
 raise NotImplementedError()

 def frob(self, normal_obj):
 """
 Take a normal object and frob it. Returns the frobbed object.
 """
 raise NotImplementedError()

 def double_frob(self, normal_obj):
 """
 Frob this object and return it multiplied by two.
 """
 return self.frob(normal_obj) * 2

def some_frob_using_method():
 # something something something
 frobber = hook_handle(FrobInterface)
 frobber.frob(blah)

 # alternately you could have a default
 frobber = hook_handle(FrobInterface) or DefaultFrobber
 frobber.defrob(foo)

It’s fine to use your interface as the key instead of a string if you
like. (Usually this is messy, but since interfaces are public and
since you need to import them into your plugin anyway, interfaces
might as well be keys.)

Then a plugin providing your interface can be like:

from mediagoblin.foo.frobfrogs import FrobInterface
from frogfrobber import utils

class FrogFrobber(FrobInterface):
 """
 Takes a frogputer science approach to frobbing.
 """
 def defrob(self, frobbed_obj):
 return utils.frog_defrob(frobbed_obj)

 def frob(self, normal_obj):
 return utils.frog_frob(normal_obj)

 hooks = {
 FrobInterface: lambda: return FrogFrobber}

Writing unit tests for plugins

Here’s a brief guide to writing unit tests for plugins. However, it
isn’t really ideal. It also hasn’t been well tested… yes, there’s
some irony there :)

Some notes: we’re using py.test and WebTest for unit testing stuff.
Keep that in mind.

My suggestion is to mime the behavior of mediagoblin/tests/ and put
that in your own plugin, like myplugin/tests/. Copy over
conftest.py and pytest.ini to your tests directory, but possibly
change the test_app fixture to match your own tests’ config needs.
For example:

import pkg_resources
[...]

@pytest.fixture()
def test_app(request):
 return get_app(
 request,
 mgoblin_config=pkg_resources.resource_filename(
 'myplugin.tests', 'myplugin_mediagoblin.ini'))

In any test module in your tests directory you can then do:

def test_somethingorother(test_app):
 # real code goes here
 pass

And you’ll get a MediaGoblin application wrapped in WebTest passed in
to your environment.

If your plugin needs to define multiple configuration setups, you can
actually set up multiple fixtures very easily for this. You can just
set up multiple fixtures with different names that point to different
configs and pass them in as that named argument.

To run the tests, from MediaGoblin’s directory (make sure that your
plugin has been added to your MediaGoblin checkout’s virtualenv!) do:

./runtests.sh /path/to/myplugin/tests/

replacing /path/to/myplugin/ with the actual path to your plugin.

NOTE: again, the above is untested, but it should probably work. If
you run into trouble, contact us [http://mediagoblin.org/pages/join.html], preferably on IRC!

Documentation on Built-in Hooks

This section explains built-in hooks to MediaGoblin.

What hooks are available?

‘collection_add_media’

This hook is used by add_media_to_collection
in mediagoblin.user_pages.lib.
It gets a CollectionItem as its argument.
It’s the newly created item just before getting committed.
So the item can be modified by the hook, if needed.
Changing the session regarding this item is currently
undefined behaviour, as the SQL Session might contain other
things.

Media Type hooks

This documents the hooks that are currently available for media_type plugins.

What hooks are available?

‘sniff_handler’

This hook is used by sniff_media in mediagoblin.media_types.__init__.
Your media type should return its sniff_media method when this hook is
called.

Note

Your sniff_media method should return either the media_type or
None.

‘get_media_type_and_manager’

This hook is used by get_media_type_and_manager in
mediagoblin.media_types.__init__. When this hook is called, your media type
plugin should check if it can handle the given extension. If so, your media
type plugin should return the media type and media manager.

(‘media_manager’, MEDIA_TYPE)

If you already know the string representing the media type of a type
of media, you can pull down the manager specifically. Note that this
hook is not a string but a tuple of two strings, the latter being the
name of the media type.

This is used by media entries to pull down their media managers, and
so on.

Authentication Hooks

This documents the hooks that are currently available for authentication
plugins. If you need new hooks for your plugin, go ahead a submit a patch.

For an example of how to write an authentication plugin, see the persona
plugin in MediaGoblin up to v0.11.0. This plugin has since been removed as the
Mozilla Persona was decommissioned.

What hooks are available?

‘authentication’

This hook just needs to return True as this is how
the MediaGoblin app knows that an authentication plugin is enabled.

‘auth_extra_validation’

This hook is used to provide any additional validation of the registration
form when using mediagoblin.auth.tools.register_user(). This hook runs
through all enabled auth plugins.

‘auth_create_user’

This hook is used by mediagoblin.auth.tools.register_user() so plugins can
store the necessary information when creating a user. This hook runs through
all enabled auth plugins.

‘auth_get_user’

This hook is used by mediagoblin.auth.tools.check_login_simple(). Your
plugin should return a User object given a username.

‘auth_no_pass_redirect’

This hook is called in mediagoblin.auth.views in both the login and
register views. This hook should return the name of your plugin, so that
if basic_auth plugin is not enabled, the user will be redirected to the
correct login and registration views for your plugin.

The code assumes that it can generate a valid URL given
mediagoblin.plugins.{{ your_plugin_here }}.login and
mediagoblin.plugins.{{ your_plugin_here }}.register. This is only needed if
you will not be using the login and register views in
mediagoblin.auth.views.

‘auth_get_login_form’

This hook is called in mediagoblin.auth.views.login(). If you are not using
that view, then you do not need this hook. This hook should take a request
object and return the LoginForm for your plugin.

‘auth_get_registration_form’

This hook is called in mediagoblin.auth.views.register(). If you are not
using that view, then you do not need this hook. This hook should take a
request object and return the RegisterForm for your plugin.

‘auth_gen_password_hash’

This hook should accept a raw_pass and an extra_salt and return a
hashed password to be stored in User.pw_hash.

‘auth_check_password’

This hook should accept a raw_pass, a stored_hash, and an extra_salt.
Your plugin should then check that the raw_pass hashes to the same thing as
the stored_hash and return either True or False.

‘auth_fake_login_attempt’

This hook is called in mediagoblin.auth.tools.check_login_simple. It is
called if a user is not found and should do something that takes the same amount
of time as your check_password function. This is to help prevent timing
attacks.

Contributing

This page will describe how to get started contributing to MediaGoblin:

	How to set up a development environment

	How to run the test suite

	How to update and build the documentation

	How to submit code contributions

We eventually hope to migrate the information over from these wiki pages:

	https://wiki.mediagoblin.org/Main_Page#Technical_project_documentation

	https://wiki.mediagoblin.org/HackingHowto

	https://wiki.mediagoblin.org/Git_workflow

Codebase Documentation

Sections

	What’s where

	Software Stack

This chapter covers the libraries that GNU MediaGoblin uses as well as
various recipes for getting things done.

Note

This chapter is in flux. Clearly there are things here that aren’t
documented. If there’s something you have questions about, please
ask!

See the join page on the website [http://mediagoblin.org/join/]
for where we hang out.

For more information on how to get started hacking on GNU MediaGoblin,
see the wiki [https://web.archive.org/web/20200817190402/https://wiki.mediagoblin.org/], and specifically, go
through the
Hacking HOWTO [https://web.archive.org/web/20200817190402/https://wiki.mediagoblin.org/HackingHowto]
which explains generally how to get going with running an instance for
development.

What’s where

After you’ve run checked out MediaGoblin and followed the virtualenv
instantiation instructions, you’re faced with the following directory
tree:

mediagoblin/
|- mediagoblin/ # source code
| |- db/ # database setup
| |- tools/ # various utilities
| |- init/ # "initialization" tools (arguably should be in tools/)
| |- tests/ # unit tests
| |- templates/ # templates for this application
| |- media_types/ # code for processing, displaying different media
| |- storage/ # different storage backends
| |- gmg_commands/ # command line tools (./bin/gmg)
| |- themes/ # pre-bundled themes
| |
| | # ... some submodules here as well for different sections
| | # of the application... here's just a few
| |- auth/ # authentication (login/registration) code
| |- user_dev/ # user pages (under /u/), including media pages
| \- submit/ # submitting media for processing
|
|- docs/ # documentation
|- devtools/ # some scripts for developer convenience
|
|- user_dev/ # local instance sessions, media, etc
|
| # the below directories are installed into your virtualenv checkout
|
|- bin/ # scripts
|- develop-eggs/
|- lib/ # python libraries installed into your virtualenv
|- include/
|- mediagoblin.egg-info/
\- parts/

As you can see, all the code for GNU MediaGoblin is in the
mediagoblin directory.

Here are some interesting files and what they do:

	routing.py

	maps URL paths to views

	views.py

	views handle HTTP requests

	forms.py

	wtforms stuff for this submodule

You’ll notice that there are several sub-directories: tests,
templates, auth, submit, …

tests holds the unit test code.

templates holds all the templates for the output.

auth and submit are modules that encapsulate authentication
and media item submission. If you look in these directories, you’ll
see they have their own routing.py, view.py, and forms.py in
addition to some other code.

You’ll also notice that mediagoblin/db/ contains quite a few things,
including the following:

	models.py

	This is where the database is set up

	mixin.py

	Certain functions appended to models from here

	migrations.py

	When creating a new migration (a change to the
database structure), we put it here

Software Stack

	Project infrastructure

	Python [http://python.org/]: the language we’re using to write
this

	Py.Test [http://pytest.org/]:
for unit tests

	virtualenv [http://www.virtualenv.org/]: for setting up an
isolated environment to keep MediaGoblin and related packages
(potentially not required if MediaGoblin is packaged for your
distro)

	Data storage

	SQLAlchemy [http://sqlalchemy.org/]: SQL ORM and database
interaction library for Python. Currently we support SQLite and
PostgreSQL as backends.

	Web application

	Paste Deploy [http://pythonpaste.org/deploy/] and
Paste Script [http://pythonpaste.org/script/]: we’ll use this for
configuring and launching the application

	werkzeug [http://werkzeug.pocoo.org/]: nice abstraction layer
from HTTP requests, responses and WSGI bits

	itsdangerous [http://pythonhosted.org/itsdangerous/]:
for handling sessions

	Jinja2 [http://jinja.pocoo.org/docs/]: the templating engine

	WTForms [http://wtforms.simplecodes.com/]: for handling,
validation, and abstraction from HTML forms

	Celery [http://celeryproject.org/]: for task queuing (resizing
images, encoding video, …)

	Babel [http://babel.edgewall.org]: Used to extract and compile
translations.

	Markdown (for python) [http://pypi.python.org/pypi/Markdown]:
implementation of Markdown [http://daringfireball.net/projects/markdown/]
text-to-html tool to make it easy for people to write rich text
comments, descriptions, and etc.

	lxml [http://lxml.de/]: nice XML and HTML processing for
python.

	Media processing libraries

	Python Imaging Library [http://www.pythonware.com/products/pil/]:
used to resize and otherwise convert images for display.

	GStreamer [http://gstreamer.freedesktop.org/]: (Optional, for
video hosting sites only) Used to transcode video, and in the
future, probably audio too.

	chardet [http://pypi.python.org/pypi/chardet]: (Optional, for
ASCII art hosting sites only) Used to make ASCII art thumbnails.

	Front end

	jQuery [http://jquery.com/]: for groovy JavaScript things

Storage

The storage systems attached to your app

Dynamic content: queue_store and public_store

Two instances of the StorageInterface come attached to your app. These
are:

	queue_store: When a user submits a fresh piece of media for
their gallery, before the Processing stage, that piece of media sits
here in the queue_store. (It’s possible that we’ll rename this to
“private_store” and start storing more non-publicly-stored stuff in
the future…). This is a StorageInterface implementation
instance. Visitors to your site probably cannot see it… it isn’t
designed to be seen, anyway.

	public_store: After your media goes through processing it gets
moved to the public store. This is also a StorageInterface
implementation, and is for stuff that’s intended to be seen by
site visitors.

The workbench

In addition, there’s a “workbench” used during
processing… it’s just for temporary files during
processing, and also for making local copies of stuff that
might be on remote storage interfaces while transitionally
moving/converting from the queue_store to the public store.
See the workbench module documentation for more.

	
class mediagoblin.tools.workbench.Workbench(dir)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Represent the directory for the workbench

WARNING: DO NOT create Workbench objects on your own,
let the WorkbenchManager do that for you!

	
destroy()

	Destroy this workbench! Deletes the directory and all its contents!

WARNING: Does no checks for a sane value in self.dir!

	
localized_file(storage, filepath, filename_if_copying=None, keep_extension_if_copying=True)

	Possibly localize the file from this storage system (for read-only
purposes, modifications should be written to a new file.).

If the file is already local, just return the absolute filename of that
local file. Otherwise, copy the file locally to the workbench, and
return the absolute path of the new file.

If it is copying locally, we might want to require a filename like
“source.jpg” to ensure that we won’t conflict with other filenames in
our workbench… if that’s the case, make sure filename_if_copying is
set to something like ‘source.jpg’. Relatedly, if you set
keep_extension_if_copying, you don’t have to set an extension on
filename_if_copying yourself, it’ll be set for you (assuming such an
extension can be extacted from the filename in the filepath).

	Returns:

	localized_filename

	Examples:

	>>> wb_manager.localized_file(
... '/our/workbench/subdir', local_storage,
... ['path', 'to', 'foobar.jpg'])
u'/local/storage/path/to/foobar.jpg'

>>> wb_manager.localized_file(
... '/our/workbench/subdir', remote_storage,
... ['path', 'to', 'foobar.jpg'])
'/our/workbench/subdir/foobar.jpg'

>>> wb_manager.localized_file(
... '/our/workbench/subdir', remote_storage,
... ['path', 'to', 'foobar.jpg'], 'source.jpeg', False)
'/our/workbench/subdir/foobar.jpeg'

>>> wb_manager.localized_file(
... '/our/workbench/subdir', remote_storage,
... ['path', 'to', 'foobar.jpg'], 'source', True)
'/our/workbench/subdir/foobar.jpg'

	
class mediagoblin.tools.workbench.WorkbenchManager(base_workbench_dir)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A system for generating and destroying workbenches.

Workbenches are actually just subdirectories of a (local) temporary
storage space for during the processing stage. The preferred way to
create them is to use:

	with workbenchmger.create() as workbench:

	do stuff…

This will automatically clean up all temporary directories even in
case of an exceptions. Also check the
@mediagoblin.decorators.get_workbench decorator for a convenient
wrapper.

	
create()

	Create and return the path to a new workbench (directory).

Static assets / staticdirect

On top of all that, there is some static media that comes bundled with your
application. This stuff is kept in mediagoblin/static/.

These files are for MediaGoblin base assets. Things like the CSS files,
logos, etc. You can mount these at whatever location is appropriate to you
(see the direct_remote_path option in the config file) so if your users
are keeping their static assets at http://static.mgoblin.example.org/ but
their actual site is at http://mgoblin.example.org/, you need to be able
to get your static files in a where-it’s-mounted agnostic way. There’s a
“staticdirector” attached to the request object. It’s pretty easy to use;
just look at this bit taken from the
mediagoblin/templates/mediagoblin/base.html main template:

<link rel="stylesheet" type="text/css"
 href="Template:Request.staticdirect('/css/extlib/text.css')"/>

see? Not too hard. As expected, if you configured direct_remote_path to be
http://static.mgoblin.example.org/ you’ll get back
http://static.mgoblin.example.org/css/extlib/text.css just as you’d
probably expect.

StorageInterface and implementations

The guts of StorageInterface and friends

So, the StorageInterface!

So, the public and queue stores both use StorageInterface implementations
… but what does that mean? It’s not too hard.

Open up mediagoblin/storage.py.

In here you’ll see a couple of things. First of all, there’s the
StorageInterface class. What you’ll see is that this is just a very simple
python class. A few of the methods actually implement things, but for the
most part, they don’t. What really matters about this class is the
docstrings. Each expected method is documented as to how it should be
constructed. Want to make a new StorageInterface? Simply subclass it. Want
to know how to use the methods of your storage system? Read these docs,
they span all implementations.

There are a couple of implementations of these classes bundled in
storage.py as well. The most simple of these is BasicFileStorage, which is
also the default storage system used. As expected, this stores files
locally on your machine.

There’s also a CloudFileStorage system. This provides a mapping to
[OpenStack’s Swift http://swift.openstack.org/] storage system (used by
RackSpace Cloud files and etc).

Between these two examples you should be able to get a pretty good idea of
how to write your own storage systems, for storing data across your
Beowulf cluster of radioactive monkey brains, whatever.

Writing code to store stuff

So what does coding for StorageInterface implementations actually look
like? It’s pretty simple, really. For one thing, the design is fairly
inspired by [Django’s file storage API
https://docs.djangoproject.com/en/dev/ref/files/storage/]… with some
differences.

Basically, you access files on “file paths”, which aren’t exactly like
Unix file paths, but are close. If you wanted to store a file on a path
like dir1/dir2/filename.jpg you’d actually write that file path like:

['dir1', 'dir2', 'filename.jpg']

This way we can be sure that each component is actually a component of
the path that’s expected… we do some filename cleaning on each component.

Your StorageInterface should pass in and out “file like objects”. In other
words, they should provide .read() and .write() at minimum, and probably
also .seek() and .close().

Release Checklist

	update docs/sources/siteadmin/relnotes.txt

	update docs/sources/siteadmin/upgrading.txt

	write a blog post

	test the upgrade process

	build the docs and check they look good

	git tag –annotate v0.11.0 –signed –message

	push tags

	log in and rebuild master and new version docs on readthedocs.org

	merge into stable branch?

	post to mediagoblin-devel

	post to info-gnu@gnu.org

	post to mastodon and twitter

	update IRC topic

	email personal contacts

	update mediagoblin/_version.py

	update configure.ac version

	update mediagoblin/_version.py again to add “.dev” suffix

	update configure.ac version again to add “.dev” suffix

Do we even need a stable branch? I’m not entirely happy with the upgrade
instructions “git fetch && git checkout -q v0.11.0 && git submodule update”. Why
have a stable branch if you’re asking them to checkout a particular tag anyway?

What to do if you’ve pushed a tag and the docs need updating?

Original Design Decisions

Sections

	Why GNU MediaGoblin?

	Why Python

	Why WSGI Minimalism

	Why MongoDB

	Why Sphinx for documentation

	Why AGPLv3 and CC0?

	Why (non-mandatory) copyright assignment?

This chapter talks a bit about design decisions.

Note: This is an outdated document. It’s more or less the historical
reasons for a lot of things. That doesn’t mean these decisions have
stayed the same or we haven’t changed our minds on some things!

Why GNU MediaGoblin?

Chris and Will on “Why GNU MediaGoblin”:

Chris came up with the name MediaGoblin. The name is pretty fun.
It merges the idea that this is a Media hosting project with
Goblin which sort of sounds like gobbling. Here’s a piece of
software that gobbles up your media for all to see.

According to Wikipedia [http://en.wikipedia.org/wiki/Goblin], a
goblin is:

a legendary evil or mischievous illiterate creature, described
as grotesquely evil or evil-like phantom

So are we evil? No. Are we mischievous or illiterate? Not
really. So what kind of goblin are we thinking about? We’re
thinking about these goblins:

[image: Cute goblin with a beret.]

Figure 1: Cute goblin with a beret. Illustrated by Chris
Webber

[image: Snuggly goblin with a beret.]

Figure 2: Snuggly goblin. Illustrated by Karen Rustad

Those are pretty cute goblins. Those are the kinds of goblins
we’re thinking about.

Chris started doing work on the project after thinking about it
for a year. Then, after talking with Matt and Rob, it became an
official GNU project. Thus we now call it GNU MediaGoblin.

That’s a lot of letters, though, so in the interest of brevity and
facilitating easier casual conversation and balancing that with
what’s important to us, we have the following rules:

	“GNU MediaGoblin” is the name we’re going to use in all official
capacities: web site, documentation, press releases, …

	In casual conversation, it’s OK to use more casual names.

	If you’re writing about the project, we ask that you call it GNU
MediaGoblin.

	If you don’t like the name, we kindly ask you to take a deep
breath, think a happy thought about cute little goblins playing
on a playground and taking cute pictures of themselves, and let
it go. (Will added this one.)

Why Python

Chris Webber on “Why Python”:

Because I know Python, love Python, am capable of actually making
this thing happen in Python (I’ve worked on a lot of large free
software web applications before in Python, including Miro
Community [http://mirocommunity.org/], the Miro Guide [http://miroguide.org/], a large portion of Creative
Commons [http://creativecommons.org/], and a whole bunch of things while working at Imaginary
Landscape [http://www.imagescape.com/]). Me starting a project like this makes sense if it’s
done in Python.

You might say that PHP is way more deployable, that Rails has way
more cool developers riding around on fixie bikes—and all of
those things are true. But I know Python, like Python, and think
that Python is pretty great. I do think that deployment in Python
is not as good as with PHP, but I think the days of shared hosting
are (thankfully) coming to an end, and will probably be replaced
by cheap virtual machines spun up on the fly for people who want
that sort of stuff, and Python will be a huge part of that future,
maybe even more than PHP will. The deployment tools are getting
better. Maybe we can use something like Silver Lining. Maybe we
can just distribute as .debs or .rpms. We’ll figure it
out when we get there.

Regardless, if I’m starting this project, which I am, it’s gonna
be in Python.

Why WSGI Minimalism

Chris Webber on “Why WSGI Minimalism”:

If you notice in the technology list I list a lot of components
that are very “Django-like”, but not actually Django [http://www.djangoproject.com/]
components. What can I say, I really like a lot of the ideas in
Django! Which leads to the question: why not just use Django?

While I really like Django’s ideas and a lot of its components, I
also feel that most of the best ideas in Django I want have been
implemented as good or even better outside of Django. I could
just use Django and replace the templating system with Jinja2, and
the form system with wtforms, and the database with MongoDB and
MongoKit, but at that point, how much of Django is really left?

I also am sometimes saddened and irritated by how coupled all of
Django’s components are. Loosely coupled yes, but still coupled.
WSGI has done a good job of providing a base layer for running
applications on and if you know how to do it yourself 1, it’s
not hard or many lines of code at all to bind them together
without any framework at all (not even say Pylons [http://pylonshq.com/], Pyramid [http://docs.pylonsproject.org/projects/pyramid/dev/]
or Flask [http://flask.pocoo.org/] which I think are still great projects, especially for
people who want this sort of thing but have no idea how to get
started). And even at this already really early stage of writing
MediaGoblin, that glue work is mostly done.

Not to say I don’t think Django isn’t great for a lot of things.
For a lot of stuff, it’s still the best, but not for MediaGoblin,
I think.

One thing that Django does super well though is documentation. It
still has some faults, but even with those considered I can hardly
think of any other project in Python that has as nice of
documentation as Django. It may be worth learning some lessons on
documentation from Django 2, on that note.

I’d really like to have a good, thorough hacking-howto and
deployment-howto, especially in the former making some notes on
how to make it easier for Django hackers to get started.

	1

	http://pythonpaste.org/webob/do-it-yourself.html

	2

	http://pycon.blip.tv/file/4881071/

Why MongoDB

(Note: We don’t use MongoDB anymore. This is the original rationale,
however.)

Chris Webber on “Why MongoDB”:

In case you were wondering, I am not a NOSQL fanboy, I do not go
around telling people that MongoDB is web scale. Actually my
choice for MongoDB isn’t scalability, though scaling up really
nicely is a pretty good feature and sets us up well in case large
volume sites eventually do use MediaGoblin. But there’s another
side of scalability, and that’s scaling down, which is important
for federation, maybe even more important than scaling up in an
ideal universe where everyone ran servers out of their own
housing. As a memory-mapped database, MongoDB is pretty hungry,
so actually I spent a lot of time debating whether the inability
to scale down as nicely as something like SQL has with SQLite
meant that it was out.

But I decided in the end that I really want MongoDB, not for
scalability, but for flexibility. Schema evolution pains in SQL
are almost enough reason for me to want MongoDB, but not quite.
The real reason is because I want the ability to eventually handle
multiple media types through MediaGoblin, and also allow for
plugins, without the rigidity of tables making that difficult. In
other words, something like:

{"title": "Me talking until you are bored",
 "description": "blah blah blah",
 "media_type": "audio",
 "media_data": {
 "length": "2:30",
 "codec": "OGG Vorbis"},
 "plugin_data": {
 "licensing": {
 "license": "http://creativecommons.org/licenses/by-sa/3.0/"}}}

Being able to just dump media-specific information in a media_data
hash table is pretty great, and even better is having a plugin
system where you can just let plugins have their own entire
key-value space cleanly inside the document that doesn’t interfere
with anyone else’s stuff. If we were to let plugins to deposit
their own information inside the database, either we’d let plugins
create their own tables which makes SQL migrations even harder
than they already are, or we’d probably end up creating a table
with a column for key, a column for value, and a column for type
in one huge table called “plugin_data” or something similar. (Yo
dawg, I heard you liked plugins, so I put a database in your
database so you can query while you query.) Gross.

I also don’t want things to be too loose so that we forget or lose
the structure of things, and that’s one reason why I want to use
MongoKit, because we can cleanly define a much structure as we
want and verify that documents match that structure generally
without adding too much bloat or overhead (MongoKit is a pretty
lightweight wrapper and doesn’t inject extra MongoKit-specific
stuff into the database, which is nice and nicer than many other
ORMs in that way).

Why Sphinx for documentation

Will Kahn-Greene on “Why Sphinx”:

Sphinx [http://sphinx.pocoo.org/] is a fantastic tool for organizing documentation for a
Python-based project that makes it pretty easy to write docs that
are readable in source form and can be “compiled” into HTML, LaTeX
and other formats.

There are other doc systems out there, but given that GNU
MediaGoblin is being written in Python and I’ve done a ton of
documentation using Sphinx, it makes sense to use Sphinx for now.

Why AGPLv3 and CC0?

Chris, Brett, Will, Rob, Matt, et al curated into a story where
everyone is the hero by Will on “Why AGPLv3 and CC0”:

The AGPL v3 [http://www.gnu.org/licenses/agpl.html] preserves the freedoms guaranteed by the GPL v3 in
the context of software as a service. Using this license ensures
that users of the service have the ability to examine the source,
deploy their own instance, and implement their own version. This
is really important to us and a core mission component of this
project. Thus we decided that the software parts should be under
this license.

However, the project is made up of more than just software:
there’s CSS, images, and other output-related things. We wanted
the templates/images/css side of the project all permissive and
permissive in the same absolutely permissive way. We’re waiving
our copyrights to non-software things under the CC0 waiver.

That brings us to the templates where there’s some code and some
output. The template engine we’re using is called Jinja2. It
mixes HTML markup with Python code to render the output of the
software. We decided the templates are part of the output of the
software and not the software itself. We wanted the output of the
software to be licensed in a hassle-free way so that when someone
deploys their own GNU MediaGoblin instance with their own
templates, they don’t have to deal with the copyleft aspects of
the AGPLv3 and we’d be fine with that because the changes they’re
making are identity-related. So at first we decided to waive our
copyrights to the templates with a CC0 waiver and then add an
exception to the AGPLv3 for the software such that the templates
can make calls into the software and yet be a separately licensed
work. However, Brett brought up the question of whether this
allows some unscrupulous person to make changes to the software
through the templates in such a way that they’re not bound by the
AGPLv3: i.e. a loophole. We thought about this loophole and
between this and the extra legalese involved in the exception to
the AGPLv3, we decided that it’s just way simpler if the templates
were also licensed under the AGPLv3.

Then we have the licensing for the documentation. Given that the
documentation is tied to the software content-wise, we don’t feel
like we have to worry about ensuring freedom of the documentation
or worry about attribution concerns. Thus we’re waiving our
copyrights to the documentation under CC0 as well.

Lastly, we have branding. This covers logos and other things that
are distinctive to GNU MediaGoblin that we feel represents this
project. Since we don’t currently have any branding, this is an
open issue, but we’re thinking we’ll go with a CC BY-SA license.

By licensing in this way, we make sure that users of the software
receive the freedoms that the AGPLv3 ensures regardless of what
fate befalls this project.

So to summarize:

	software (Python, JavaScript, HTML templates): licensed
under AGPLv3

	non-software things (CSS, images, video): copyrights waived
under CC0 because this is output of the software

	documentation: copyrights waived under CC0 because it’s not part
of the software

	branding assets: we’re kicking this can down the road, but
probably CC BY-SA

This is all codified in the COPYING file.

Why (non-mandatory) copyright assignment?

Chris Webber on “Why copyright assignment?”:

GNU MediaGoblin is a GNU project with non-mandatory but heavily
encouraged copyright assignment to the FSF. Most, if not all, of
the core contributors to GNU MediaGoblin will have done a
copyright assignment, but unlike some other GNU projects, it isn’t
required here. We think this is the best choice for GNU
MediaGoblin: it ensures that the Free Software Foundation may
protect the software by enforcing the AGPL if the FSF sees fit,
but it also means that we can immediately merge in changes from a
new contributor. It also means that some significant non-FSF
contributors might also be able to enforce the AGPL if seen fit.

Again, assignment is not mandatory, but it is heavily encouraged,
even incentivized: significant contributors who do a copyright
assignment to the FSF are eligible to have a unique goblin drawing
produced for them by the project’s main founder, Christopher Allan
Webber. See the wiki [https://web.archive.org/web/20200817190402/https://wiki.mediagoblin.org/] for details.

Migrations

So, about migrations. Every time we change the way the database
structure works, we need to add a migration so that people running
older codebases can have their databases updated to the new structure
when they run ./bin/gmg dbupdate.

The first time ./bin/gmg dbupdate is run by a user, it creates the
tables at the current state that they’re defined in models.py and sets
the migration number to the current migration… after all, migrations
only exist to get things to the current state of the db. After that,
every migration is run with dbupdate.

There’s a few things you need to know:

	We use Alembic [https://bitbucket.org/zzzeek/alembic] to run
migrations. We also make heavy use of the
branching model [http://alembic.readthedocs.org/en/latest/branches.html]
for our plugins. Every plugin gets its own migration branch.

	We used to use sqlalchemy-migrate [http://code.google.com/p/sqlalchemy-migrate/].
See their docs [https://sqlalchemy-migrate.readthedocs.org/].
sqlalchemy-migrate is now only kept around for legacy migrations;
don’t add any more! But some users are still using older databases,
and we need to provide the intermediary “old” migrations for a while.

	SQLAlchemy has two parts to it, the ORM and the “core” interface.
We DO NOT use the ORM when running migrations. Think about it: the
ORM is set up with an expectation that the models already reflect a
certain pattern. But if a person is moving from their old pattern
and are running tools to get to the current pattern, of course
their current database structure doesn’t match the state of the ORM!
Anyway, Alembic has its own conventions for migrations; follow those.

	Alembic’s documentation is pretty good; you don’t need to worry about
setting up the migration environment or the config file so you can
skip those parts. You can start at the
Create a Migration Script [http://alembic.readthedocs.org/en/latest/tutorial.html#create-a-migration-script]
section.

	Users should only use ./bin/gmg dbupdate. However, developers
may wish to use the ./bin/gmg alembic subcommand, which wraps
alembic’s own command line interface. Alembic has some tools for
autogenerating migrations [http://alembic.readthedocs.org/en/latest/autogenerate.html],
and they aren’t perfect, but they are helpful. (You can pass in
./bin/gmg alembic –with-plugins revision –autogenerate if you need
to include plugins in the generated output; see the
plugin database chapter for more info.)

That’s it for now! Good luck!

API Authentication

Sections

	Registering a Client

	Response

	Examples

	Register Client

	Updating Client

	Possible Registration Errors

	OAuth

	Endpoints

Registering a Client

To use the GNU MediaGoblin API you need to use the dynamic client registration. This has been adapted from the OpenID specification [https://openid.net/specs/openid-connect-registration-1_0.html], this is the only part of OpenID that is being used to serve the purpose to provide the client registration which is used in OAuth.

The endpoint is /api/client/register

The parameters are:

	type

	required - This must be either client_associate (for new registration) or client_update

	client_id

	update only - This should only be used updating client information, this is the client_id given when you register

	client_secret

	update only - This should only be used updating client information, this is the client_secret given when you register

	contacts

	optional - This a space separated list of email addresses to contact of people responsible for the client

	application_type

	required - This is the type of client you are making, this must be either web or native

	application_name

	optional - This is the name of your client

	logo_uri

	optional - This is a URI of the logo image for your client

	redirect_uri

	optional - This is a space separated list of pre-registered URLs for use at the Authentication Server

Response

You will get back a response:

	client_id

	This identifies a client

	client_secret

	This is the secret.

	expires_at

	This is time that the client credentials expire. If this is 0 the client registration does not expire.

Examples

Register Client

To register a client for the first time, this is the minimum you must supply:

{
 "type": "client_associate",
 "application_type": "native"
}

A Response will look like:

{
 "client_secret": "hJtfhaQzgKerlLVdaeRAgmbcstSOBLRfgOinMxBCHcb",
 "expires_at": 0,
 "client_id": "vwljdhUMhhNbdKizpjZlxv"
}

Updating Client

Using the response we got above we can update the information and add new information we may have opted not to supply:

{
 "type": "client_update",
 "client_id": "vwljdhUMhhNbdKizpjZlxv",
 "client_secret": "hJtfhaQzgKerlLVdaeRAgmbcstSOBLRfgOinMxBCHcb",
 "application_type": "web",
 "application_name": "MyClient!",
 "logo_uri": "https://myclient.org/images/my_logo.png",
 "contacts": "myemail@someprovider.com another_developer@provider.net",
}

The response will just return back the client_id and client_secret you sent:

{
 "client_id": "vwljdhUMhhNbdKizpjZlxv",
 "client_secret": "hJtfhaQzgKerlLVdaeRAgmbcstSOBLRfgOinMxBCHcb",
 "expires_at": 0
}

Possible Registration Errors

There are a number of errors you could get back, This explains what could cause some of them:

	Could not decode data

	This is caused when you have an error in the encoding of your data.

	Unknown Content-Type

	You should sent a Content-Type header with when you make a request, this should be either application/json or www-form-urlencoded. This is caused when a unknown Content-Type is used.

	No registration type provided

	This is when you leave out the type. This should either be client_update or client_associate

	Unknown application_type.

	This is when you have provided a type however this isn’t one of the known types.

	client_id is required to update.

	When you try and update you need to specify the client_id, this will be what you were given when you initially registered the client.

	client_secret is required to update.

	When you try to update you need to specify the client_secret, this will be what you were given when you initially register the client.

	Unauthorized.

	This is when you are trying to update however the client_id and/or client_secret you have submitted are incorrect.

	Only set client_id for update.

	This should only be given when you update.

	Only set client_secret for update.

	This should only be given when you update.

	Logo URL <URL> is not a valid URL

	This is when the URL specified did not meet the validation.

	contacts must be a string of space-separated email addresses.

	contacts should be a string (not a list), ensure each email is separated by a space

	Email <email> is not a valid email

	This is when you have submitted an invalid email address

	redirect_uris must be space-separated URLs.

	redirect_uris should be a string (not a list), ensure each URL is separated by a space

	URI <URI> is not a valid URI

	This is when your URI is invalid.

OAuth

GNU MediaGoblin uses OAuth1 to authenticate requests to the API. There are many
libraries out there for OAuth1, you’re likely not going to have to do much. There
is a library for the GNU MediaGoblin called PyPump [https://github.com/xray7224/PyPump].
We are not using OAuth2 as we want to stay completely compatible with pump.io.

Endpoints

These are the endpoints you need to use for the OAuth requests:

/oauth/request_token is for getting the request token.

/oauth/authorize is to send the user to to authorize your application.

/oauth/access_token is for getting the access token to use in requests.

Activities

Sections

	Objects

	Example

	Activities

	Example

	Collections

	Example

	Feeds

	Inbox

	Major

	Minor

	Direct

	Direct major

	Direct minor

	Feed (outbox)

GNU MediaGoblin uses Activity Streams 1.0 [http://activitystrea.ms] JSON
format to represent activities or events that happen. There are several
components to Activity Streams.

Objects

These represent “things” in MediaGoblin such as types of media, comments, collections
of other objects, etc. There are attributes all objects have and some attributes which
are specific to certain objects.

Example

a representation of an image object:

{
 "id": "https://gmg.server.tld/api/image/someidhere",
 "objectType": "image",
 "content": "My lovely image",
 "image": {
 "url": "https://gmg.server.tld/mgoblin_media/media_entries/23/some_image.jpg",
 "height": 1000,
 "width": 500
 },
 "author": {
 "id": "acct:someone@gmg.server.tld"
 }
}

This has both attributes which are on all objects (e.g. objectType and id)
and attributes which are on only images (e.g. image).

Activities

This is something which happens such as: commenting on an image, uploading an image, etc.
these always have a verb which describes what kind of activity it is and they always have
an object associated with them.

Example

A activity which describes the event of posting a new image:

{
 "id": "https://gmg.server.tld/api/activity/someidhere",
 "verb": "post",
 "object": {
 "id": "https://gmg.server.tld/api/comment/someid",
 "objectType": "comment",
 "content": "What a wonderful picture you have there!",
 "inReplyTo": {
 "id": "https://gmg.server.tld/api/image/someidhere"
 }
 },
 "author": {
 "id": "acct:someone@gmg.server.tld"
 }
}

Collections

These are ordered lists which contain objects. Currently in GNU MediaGoblin they are used
to represent “albums” or collections of media however they can represent anything. They will
be used in the future to represent lists/groups of users which you can send activities to.

Example

A collection which contains two images:

{
 "id": "https://gmg.server.tld/api/collection/someidhere",
 "totalItems": 2,
 "url": "http://gmg.server.tld/u/someone/collection/cool-album/",
 "items": [
 {
 "id": "https://gmg.server.tld/api/image/someidhere",
 "objectType": "image",
 "content": "My lovely image",
 "image": {
 "url": "https://gmg.server.tld/mgoblin_media/media_entries/23/some_image.jpg",
 "height": 1000,
 "width": 500
 },
 "author": {
 "id": "acct:someone@gmg.server.tld"
 }
 },
 {
 "id": "https://gmg.server.tld/api/image/someother",
 "objectType": "image",
 "content": "Another image for you",
 "image": {
 "url": "https://gmg.server.tld/mgoblin_media/media_entries/24/some_other_image.jpg",
 "height": 1000,
 "width": 500
 },
 "author": {
 "id": "acct:someone@gmg.server.tld"
 }
 }
]
}

Feeds

There are several feeds which can be read and posted to as part of the API. Some
of the feeds are still a work in progress however a lot of them are present for
compatibility.

They also support certain GET parameters which allow you to control the stream.
These are:

	Parameter

	Default

	Limit

	Description

	count

	20

	200

	Number of activities to return

	offset

	0

	No limit

	Offset of collection

Warning

Activities are added to the beginning of collection so using count and
offset is a bad way of doing pages.

Important

Due to the way we’re currently doing deletes in MediaGoblin some activities
are broken and are skipped. This means the number you specify in the count
is NOT always the number of activities returned.

Inbox

Endpoint: /api/user/<username>/inbox

This feed can be read by user to see what media has been sent to them.
MediaGoblin currently doesn’t have the ability to sent media to anyone
as all media is public, all media on that instance should show up in the
users inbox.

There are also subsets of the inbox which are:

Major

Endpoint: /api/user/<username>/inbox/major

This contains all major changes such as new objects being posted. Currently
comments exist in this feed, in the future they will be moved to the minor feed.

Minor

Endpoint: /api/user/<username>/inbox/minor

This contains minor changes such as objects being updated or deleted. This feed
should have comments in it, currently they are listed under major, in the future
they will exist in this endpoint.

Direct

Endpoint: /api/user/<username>/inbox/direct

Currently this is just a mirror of the regular inbox for compatibility with
pump.io. In the future this will contain all objects specifically addressed to
the user.

Direct major

Endpoint: /api/user/<username>/inbox/direct/major

Currently this is just a mirror of the major inbox for compatibility with
pump.io. In the future this will contain all major activities which are
specifically addressed to the user.

Direct minor

Endpoint: /api/user/<username>/inbox/direct/minor

Currently this is just a mirror of the minor inbox for compatibility with
pump.io. In the future this will contain all minor activities which are
specifically addressed to the user.

Feed (outbox)

Endpoint: /api/user/<username>/feed

This is where the client should post new activities. It can be read by the
user to see what they have posted. This will only contain content they have
authored or shared (sharing will come in the future).

Note

Currently only image uploading is supported.

Objects

Using any the APIs mentioned in this document you will required
API Authentication. There are many ways to interact with objects, some of
which aren’t supported yet by MediaGoblin such as liking or sharing objects
however you can interact with them by updating them, deleting them and
commenting on them.

Posting Objects

For the most part you should be able to post objects by creating the JSON
representation of the object on an activity and posting that to the user’s
feed (outbox). Images however are slightly different and there are more steps
to it as you might imagine.

Using posting a comment as an example, I’ll show you how to post the object
to GNU MediaGoblin or pump.io. I first need to create the JSON representation
of the activity with the object but without the ID, URL, published or updated
timestamps or any other data the server creates. My activity comment is:

{
 "verb": "post",
 "object": {
 "objectType": "comment",
 "content": "This is my comment to be posted",
 "inReplyTo": {
 "id": "https://<server>/api/image/1"
 }
 }
}

This should be posted to the users feed (outbox) which you can find out about
Activities. You will get back the full activity containing all of
attributes including ID, URLs, etc.

Posting Media

Posting media is a special case from posting all other objects. This is because
you need to submit more than just the JSON image representation, you need to
actually subject the image itself. There is also strange behavior around media
postings where if you want to give the media you’re posting a title or
description you need to perform an update too. A full media posting in order of
steps to do is as follows:

	Uploads the data to the server

	Post media to feed

	Update media to have title, description, license, etc. (optional)

This could be condensed into a 2-step process however this would need to happen
upstream. If you would like to contribute to changing this upstream there is
an issue open: https://github.com/e14n/pump.io/issues/657

To upload media you should use the URL /api/user/<username>/uploads.

A POST request should be made to the media upload URL submitting at least two
headers:

	Content-Type - This being a valid MIME type for the media.

	Content-Length - size in bytes of the media.

The media data should be submitted as POST data to the image upload URL.
You will get back a JSON encoded response which will look similar to:

{
 "updated": "2014-01-11T09:45:48Z",
 "links": {
 "self": {
 "href": "https://<server>/image/4wiBUV1HT8GRqseyvX8m-w"
 }
 },
 "fullImage": {
 "url": "https://<server>//uploads/<username>/2014/1/11/V3cBMw.jpg",
 "width": 505,
 "height": 600
 },
 "replies": {
 "url": "https://<server>//api/image/4wiBUV1HT8GRqseyvX8m-w/replies"
 },
 "image": {
 "url": "https://<server>/uploads/<username>/2014/1/11/V3cBMw_thumb.jpg",
 "width": 269,
 "height": 320
 },
 "author": {
 "preferredUsername": "<username>",
 "displayName": "<username>",
 "links": {
 "activity-outbox": {
 "href": "https://<server>/api/user/<username>/feed"
 },
 "self": {
 "href": "https://<server>/api/user/<username>/profile"
 },
 "activity-inbox": {
 "href": "https://<server>/api/user/<username>/inbox"
 }
 },
 "url": "https://<server>/<username>",
 "updated": "2013-08-14T10:01:21Z",
 "id": "acct:<username>@<server>",
 "objectType": "person"
 },
 "url": "https://<server>/<username>/image/4wiBUV1HT8GRqseyvX8m-w",
 "published": "2014-01-11T09:45:48Z",
 "id": "https://<server>/api/image/4wiBUV1HT8GRqseyvX8m-w",
 "objectType": "image"
}

The main things in this response is fullImage which contains url (the URL
of the original image - i.e. fullsize) and image which contains url (the URL
of a thumbnail version).

Warning

Media which have been uploaded but not submitted to a feed will
periodically be deleted.

Once you’ve got the image object back you will need to submit the post
activity to the feed. This is exactly the same process as posting any other
object described above. You create a post activity and post that to the feed
(outbox) endpoint. The post activity looks like:

{
 "verb": "post",
 "object": {
 "id": "https://<server>/api/image/4wiBUV1HT8GRqseyvX8m-w",
 "objectType": "image"
 }
}

You will get back the full activity, unlike above however if you wish to
submit displayName (title) or content (description) information you need
to create an update activity and post that to the feed after you have posted
the image. An update activity would look like:

{
 "verb": "update",
 "object": {
 "id": "https://<server>/api/image/4wiBUV1HT8GRqseyvX8m-w",
 "displayName": "This is my title",
 "content": "This is my description",
 "objectType": "image"
 }
}

Updating Objects

If you would like to edit or update an object you can do so by submitting an
update activity. An update to a comment might look like:

{
 "verb": "update",
 "object": {
 "id": "https://<server>/api/comment/1",
 "objectType": "comment",
 "content": "This is my new updated comment!"
 }
}

This should be posted to the feed (outbox). You will get back the full update
activity in response.

Deleting Objects

Objects can be deleted by submitting a delete activity to the feed. A delete
object for a comment looks like:

{
 "verb": "delete",
 "object": {
 "id": "https://<server>/api/comment/id",
 "objectType": "comment"
 }
}

You should get the full delete activity in response.

Warning

While deletion works, currently because of the way deletion is implemented
deletion either via the API or the web UI causes any activities to be broken
and will be skipped and inaccessible. A migration to remove the broken
activities will come in a future release when soft-deletion has been
implemented.

Posting Comments

Comments currently can only be on media objects, this however will change in
future versions of MediaGoblin to be inline with pump.io and Activity Streams
1.0 which allow comments to be on any object including comments themselves.

If you want to submit a comment on an object it’s very easy, it’s just like
posting any other object except you use the inReplyTo attribute which
specifies the object you are commenting on. The inReplyTo needs to contain
the object or specifically the ID of it.

Example of comment on an image:

{
 "verb": "post",
 "object": {
 "content": "My comment here",
 "inReplyTo": {
 "id": "https://<server>/api/image/72"
 }
 }
}

This should be posted to a feed and you will get back the full activity object
as with any other object posting.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mediagoblin	

 	
 	
 mediagoblin.tools.pluginapi	

 	
 	
 mediagoblin.tools.workbench	

Index

 C
 | D
 | G
 | H
 | L
 | M
 | P
 | R
 | W

C

 	
 	create() (mediagoblin.tools.workbench.WorkbenchManager method)

D

 	
 	destroy() (mediagoblin.tools.workbench.Workbench method)

G

 	
 	get_config() (in module mediagoblin.tools.pluginapi)

 	
 	get_hook_templates() (in module mediagoblin.tools.pluginapi)

H

 	
 	hook_handle() (in module mediagoblin.tools.pluginapi)

 	
 	hook_runall() (in module mediagoblin.tools.pluginapi)

 	hook_transform() (in module mediagoblin.tools.pluginapi)

L

 	
 	localized_file() (mediagoblin.tools.workbench.Workbench method)

M

 	
 	mediagoblin.tools.pluginapi (module)

 	
 	mediagoblin.tools.workbench (module)

P

 	
 	PluginStatic (class in mediagoblin.tools.staticdirect)

R

 	
 	register_routes() (in module mediagoblin.tools.pluginapi)

 	
 	register_template_hooks() (in module mediagoblin.tools.pluginapi)

 	register_template_path() (in module mediagoblin.tools.pluginapi)

W

 	
 	Workbench (class in mediagoblin.tools.workbench)

 	
 	WorkbenchManager (class in mediagoblin.tools.workbench)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/goblin.png

_static/logo_docs.png
mediagoblin
documentation

_static/snugglygoblin.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to GNU MediaGoblin’s documentation!

 		
 Foreword

 		
 About the Site Administrator’s Guide

 		
 Improving the Site Administrator’s Guide

 		
 About GNU MediaGoblin

 		
 What is GNU MediaGoblin?

 		
 Why Build GNU MediaGoblin?

 		
 Who Contributes to the Project?

 		
 How Can I Participate?

 		
 How is GNU MediaGoblin licensed?

 		
 Is MediaGoblin an official GNU project? What does that mean?

 		
 Deploying MediaGoblin

 		
 Prepare System

 		
 Dependencies

 		
 Configure PostgreSQL

 		
 Drop Privileges for MediaGoblin

 		
 Create a MediaGoblin Directory

 		
 Install MediaGoblin and Virtualenv

 		
 Configure Mediagoblin

 		
 Edit site configuration

 		
 Configure MediaGoblin to use the PostgreSQL database

 		
 Update database data structures

 		
 Create an admin account

 		
 Test the Server

 		
 Deploy MediaGoblin

 		
 Nginx as a reverse-proxy

 		
 Run MediaGoblin as a system service

 		
 Restarting MediaGoblin

 		
 What next?

 		
 Further Considerations for Production Deployments

 		
 Should I Keep Open Registration Enabled?

 		
 Confidential Files

 		
 Background Media Processing

 		
 Error Monitoring with Sentry

 		
 Running multiple MediaGoblin instances on the same server

 		
 Configuring MediaGoblin

 		
 MediaGoblin’s config files

 		
 Common changes

 		
 Enabling email notifications

 		
 Changing the data directory

 		
 Displaying camera EXIF metadata

 		
 All other configuration changes

 		
 Upgrading MediaGoblin

 		
 Preparation

 		
 Upgrade

 		
 Updating your system Python

 		
 Troubleshooting

 		
 TypeError: object() takes no parameters

 		
 alembic.util.exc.CommandError: Can’t locate revision identified by ‘e9212d3a12d3’

 		
 Media Types

 		
 Enabling Media Types

 		
 How does MediaGoblin decide which media type to use for a file?

 		
 Configuring Media Types

 		
 Audio

 		
 Video

 		
 Configuring video

 		
 Raw image

 		
 ASCII art

 		
 STL / 3D model support

 		
 PDF and Document

 		
 Blog (HIGHLY EXPERIMENTAL)

 		
 How to Get Help with MediaGoblin

 		
 Release Notes

 		
 0.12.1

 		
 0.12.0

 		
 0.11.0

 		
 0.10.0

 		
 0.9.0

 		
 0.8.1

 		
 0.8.0

 		
 0.7.1

 		
 0.7.0

 		
 0.6.1

 		
 0.6.0

 		
 0.5.1

 		
 0.5.0

 		
 0.4.1

 		
 0.4.0

 		
 0.3.3

 		
 0.3.2

 		
 0.3.1

 		
 0.3.0

 		
 Theming MediaGoblin

 		
 Installing a theme

 		
 Installing the archive

 		
 Set up your webserver to serve theme assets

 		
 Configuring where things go

 		
 Making a theme

 		
 The config file

 		
 Templates

 		
 Assets

 		
 Licensing file(s)

 		
 A README.txt file

 		
 Simple theming by adding CSS

 		
 Packaging it up!

 		
 Plugins

 		
 Discovering plugins

 		
 Installing plugins

 		
 Core plugins

 		
 Other plugins

 		
 Configuring plugins

 		
 Deactivating plugins

 		
 Removing plugin packages

 		
 Upgrading plugins

 		
 Core plugins

 		
 Other plugins

 		
 Troubleshooting plugins

 		
 Command-line and batch uploading

 		
 Batch uploading

 		
 The CSV file

 		
 The location column

 		
 Other internal nodes

 		
 Metadata columns

 		
 basic_auth plugin

 		
 Set up the basic_auth plugin

 		
 flatpagesfile plugin

 		
 How to configure

 		
 How to add pages

 		
 Routes

 		
 Templates

 		
 Recipes

 		
 URL variables

 		
 LDAP plugin

 		
 Set up the LDAP plugin

 		
 Configuring the LDAP plugin

 		
 OpenID plugin

 		
 Set up the OpenID plugin

 		
 raven plugin

 		
 Set up the raven plugin

 		
 sampleplugin

 		
 Subtitles plugin

 		
 Enabling the subtitles plugin

 		
 Trim whitespace plugin

 		
 Foreword

 		
 About the Plugin Writer’s Guide

 		
 Improving the Plugin Writer’s Guide

 		
 Quick Start

 		
 Step 1: Files and directories

 		
 Step 2: README

 		
 Step 3: LICENSE

 		
 Step 4: setup.py

 		
 Step 5: the code

 		
 Step 6: Installation and configuration

 		
 Step 7: That’s it!

 		
 Where to go from here

 		
 Database models for plugins

 		
 Accessing Existing Data

 		
 Creating new Tables

 		
 Changing the Database Schema Later

 		
 Plugin API

 		
 How are hooks added? Where do I find them?

 		
 pluginapi Module

 		
 How do plugins work?

 		
 Lifecycle

 		
 Configuration

 		
 Context Hooks

 		
 View specific hooks

 		
 Global context hooks

 		
 Adding static resources

 		
 Attaching to the hook

 		
 Running plugin assetlink

 		
 Using staticdirect

 		
 Additional hook tips

 		
 WTForms hooks

 		
 Interfaces

 		
 Writing unit tests for plugins

 		
 Documentation on Built-in Hooks

 		
 What hooks are available?

 		
 ‘collection_add_media’

 		
 Media Type hooks

 		
 What hooks are available?

 		
 ‘sniff_handler’

 		
 ‘get_media_type_and_manager’

 		
 (‘media_manager’, MEDIA_TYPE)

 		
 Authentication Hooks

 		
 What hooks are available?

 		
 ‘authentication’

 		
 ‘auth_extra_validation’

 		
 ‘auth_create_user’

 		
 ‘auth_get_user’

 		
 ‘auth_no_pass_redirect’

 		
 ‘auth_get_login_form’

 		
 ‘auth_get_registration_form’

 		
 ‘auth_gen_password_hash’

 		
 ‘auth_check_password’

 		
 ‘auth_fake_login_attempt’

 		
 Contributing

 		
 Codebase Documentation

 		
 What’s where

 		
 Software Stack

 		
 Storage

 		
 The storage systems attached to your app

 		
 Dynamic content: queue_store and public_store

 		
 The workbench

 		
 Static assets / staticdirect

 		
 StorageInterface and implementations

 		
 The guts of StorageInterface and friends

 		
 Writing code to store stuff

 		
 Release Checklist

 		
 Original Design Decisions

 		
 Why GNU MediaGoblin?

 		
 Why Python

 		
 Why WSGI Minimalism

 		
 Why MongoDB

 		
 Why Sphinx for documentation

 		
 Why AGPLv3 and CC0?

 		
 Why (non-mandatory) copyright assignment?

 		
 Migrations

 		
 API Authentication

 		
 Registering a Client

 		
 Response

 		
 Register Client

 		
 Updating Client

 		
 OAuth

 		
 Endpoints

 		
 Activities

 		
 Objects

 		
 Example

 		
 Activities

 		
 Example

 		
 Collections

 		
 Example

 		
 Feeds

 		
 Objects

 		
 Posting Objects

 		
 Posting Media

 		
 Updating Objects

 		
 Deleting Objects

 		
 Posting Comments

_images/goblin.png

_images/snugglygoblin.png

_static/up.png

